基于大数据的旅游目的地情感评价方法探究

被引:150
作者
刘逸
保继刚
朱毅玲
机构
[1] 中山大学旅游学院
关键词
大数据; 旅游目的地; 情感评价模型; 情感意象;
D O I
暂无
中图分类号
F591 [世界旅游事业];
学科分类号
120203 ;
摘要
基于情绪分类取向,通过界定三个旅游文本情感分析的过滤参数:旅游专属词库、语义逻辑规则和情感乘数,构建基于网络大数据的旅游目的地情感评价模型。基于该模型,抓取了120731条游客评论对8个旅游目的地进行评价,并以联合国世界旅游组织旅游可持续发展监测数据作为标准数据进行校验。研究证实三个过滤参数具有一定的科学性,能够较为准确地捕捉到游客对目的地评价的总体情感意象;经过单年度和多年度校验,六类规则的准确度依次为:C2>C1>C3>B>评分法>A,即规则C2下的评价结果与监测结果最为吻合。结论证实了旅游大数据的可用性,为后续的理论推进和实践应用提供了科学依据。
引用
收藏
页码:1091 / 1105
页数:15
相关论文
共 37 条
[11]  
汉语语法考察与分析[M]. 北京语言文化大学出版社 , 李泉著, 2001
[12]  
Ensuring positive feedback: Factors that influence customer satisfaction in the contemporary hospitality industry[J] . Tijana Radojevic,Nemanja Stanisic,Nenad Stanic.Tourism Management . 2015
[13]  
A social media analysis of the contribution of destinations to client satisfaction with hotels[J] . Jacques Bulchand-Gidumal,Santiago Melián-González,Beatriz González Lopez-Valcarcel.International Journal of Hospitality Management . 2013
[14]  
Patterns of tourists' emotional responses, satisfaction, and intention to recommend[J] . Sameer Hosany,Girish Prayag.Journal of Business Research . 2011
[15]  
Experience quality, perceived value, satisfaction and behavioral intentions for heritage tourists[J] . Ching-Fu Chen,Fu-Shian Chen.Tourism Management . 2009 (1)
[16]  
Sentiment classification of online reviews to travel destinations by supervised machine learning approaches[J] . Qiang Ye,Ziqiong Zhang,Rob Law.Expert Systems With Applications . 2008 (3)
[17]  
Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web[J] . Sanjiv R. Das,Mike Y. Chen.Management Science . 2007 (9)
[18]  
Visitors’ experience, mood and satisfaction in a heritage context: Evidence from an interpretation center[J] . Carmen de Rojas,Carmen Camarero.Tourism Management . 2007 (3)
[19]  
The nature of satisfaction: An updated examination and analysis[J] . Barry J. Babin.Journal of Business Research . 1998 (2)
[20]  
Going to Extremes: Managing Service Encounters and Assessing Provider Performance[J] . Journal of Marketing . 1995 (2)