为提高电力负荷预测的准确性,提出一种基于经验模态分解EMD(empirical mode decomposition)与相关向量机RVM(relevant vector machine)的短期负荷预测方法。该方法利用EMD将目标负荷序列分解为若干个不同频率的固有模态分量I MF(intrinsic mode function),通过分析各个分量的特征规律,构造不同的RVM模型对各分量分别进行预测,再将各分量预测值通过RVM组合得到最终预测值。仿真结果表明,通过EMD分解,预测效果有显著改善,而RVM模型较之BP神经网络模型与SVM模型具有更高的预测精度。