基于定量递归联合熵特征重构的缓冲区流量预测算法

被引:84
作者
陆兴华 [1 ]
陈平华 [2 ]
机构
[1] 广东工业大学华立学院
[2] 广东工业大学计算机学院
关键词
基站缓冲区; 网络流量; 预测; 非线性特征;
D O I
暂无
中图分类号
TP393.06 [];
学科分类号
081201 ; 1201 ;
摘要
对网络基站缓冲区的短时网络流量的准确预测是缓解和控制拥堵的关键。基站缓冲区的短时网络流量时间序列具有非线性混沌特征,其自相关特性较弱,而传统方法采用线性时间序列分析方法没能有效挖掘流量序列的非线性特征信息,流量序列预测性能不好。提出了一种基于非线性时间序列分析的定量递归联合熵特征重构网络基站缓冲区的短时网络流量预测算法,该算法提取流量序列的定量递归联合熵特征,并对特征序列进行相空间重构;把网络流量信号模型进行高维映射,在高维相空间对短时网络流量序列进行定量递归分析;采用自相关特征奇异分解对流量序列进行聚合后的线性叠加,采用平均互信息算法和虚假最近邻点算法计算最佳时延参数和最小嵌入维;进行插值拟合形成时频分析特征分流控制,实现对网络流量的预测。仿真结果表明,该算法预测精度较高,稳定性较好,预测偏差较传统方法低,具有较好的应用价值。
引用
收藏
页码:68 / 71
页数:4
相关论文
共 11 条
[1]   基于流量特征的网络流量预测研究 [J].
张凤荔 ;
赵永亮 ;
王丹 ;
王豪 .
计算机科学, 2014, 41 (04) :86-89+98
[2]   基于节点预测的直接Cache一致性协议 [J].
张骏 ;
田泽 ;
梅魁志 ;
赵季中 .
计算机学报, 2014, 37 (03) :700-720
[3]   改进的Wolf一步预测的网络异常流量检测 [J].
杨雷 ;
李贵鹏 ;
张萍 .
科技通报, 2014, 30 (02) :47-49
[4]   延迟时间和嵌入维数联合优化的网络流量预测 [J].
张萌 ;
张沪寅 ;
叶刚 .
计算机工程与应用, 2014, 50 (04) :103-109
[5]   基于能量管理的网络入侵防波动控制方法研究 [J].
黎峰 ;
吴春明 .
计算机仿真, 2013, 30 (12) :45-48+335
[6]   小时间尺度网络流量混沌性分析及趋势预测 [J].
温祥西 ;
孟相如 ;
马志强 ;
张永春 .
电子学报, 2012, 40 (08) :1609-1616
[7]   基于定量递归分析的校园网流量特性分析 [J].
朱凡 ;
吴敏 .
计算机应用与软件, 2012, 29 (06) :275-277+281
[8]   QoS组播路由的多种群遗传算法 [J].
许利军 ;
杨棉绒 .
科技通报, 2012, 28 (05) :171-174
[9]   基于FARIMA模型的Internet时延预测 [J].
宋杨 ;
涂小敏 ;
费敏锐 .
仪器仪表学报, 2012, 33 (04) :757-763
[10]   Internet流量模型分析与评述 [J].
张宾 ;
杨家海 ;
吴建平 .
软件学报, 2011, 22 (01) :115-131