多源数据融合的道路旅行时间估计方法研究

被引:13
作者
李瑞敏
陈熙怡
机构
[1] 清华大学交通研究所
关键词
交通工程; 旅行时间估计; 权重分配模型; 神经网络模型; 数据融合;
D O I
暂无
中图分类号
U491.1 [交通调查与规划];
学科分类号
082302 ; 082303 ;
摘要
旅行时间作为交通系统运行的关键参数,可以为交通诱导系统和出行者路径选择提供决策建议。利用多源数据进行旅行时间的估计是智能交通系统运行的重要支撑。利用基于同一路段的3种检测数据,提出相应的权重分配模型和神经网络模型来进行多源检测数据的融合以获得融合后的旅行时间。对比研究了基于多断面检测器的旅行时间的2种推算方法:速度累进和速度平均。利用北京市典型道路数据对这2种融合技术的融合效果进行了对比分析,结果显示,多源数据融合可以提高旅行时间估计的准确性。
引用
收藏
页码:99 / 103
页数:5
相关论文
共 13 条
[11]  
面向交通运行状态评价的多源异质交通流数据融合技术方法研究.[D].张旭.北京交通大学.2008, 08
[12]  
基于多源交通信息的数据融合技术及其应用研究.[D].赵文涛.上海交通大学.2007, 07
[13]  
城市道路行程时间预测方法研究.[D].杨先平.吉林大学.2005, 06