基于不平衡学习的集成极限学习机污水处理故障诊断

被引:9
作者
许玉格
孙称立
赖春伶
罗飞
机构
[1] 华南理工大学自动化科学与工程学院
基金
广东省科技计划;
关键词
加权极限学习机; AdaBoost集成算法; 不平衡学习; 污水处理; 故障诊断; 模型;
D O I
暂无
中图分类号
TP181 [自动推理、机器学习]; X703 [废水的处理与利用];
学科分类号
摘要
污水处理过程的故障诊断数据具有高度不平衡性,影响了故障诊断效果,尤其是降低故障类别的识别正确率,导致出水水质不达标、运行费用增高和环境二次污染等问题出现。据此提出一种基于加权极限学习机集成算法的污水处理故障诊断建模方法。该方法将不平衡分类评价指标G-mean引入以加权极限学习机为基分类器的Ada Boost集成分类模型,定义新的基分类器初始权值矩阵更新规则和集成权重计算公式,用于基分类器的迭代学习。由仿真实验结果可知,基于加权极限学习机集成算法的污水处理故障诊断模型,可有效提高分类性能G-mean值和整体分类精度,特别提高了故障类的识别正确率,验证了基于加权极限学习机的集成算法在不平衡性污水处理故障诊断问题上的有效性。
引用
收藏
页码:3114 / 3124
页数:11
相关论文
共 14 条