现有的基于Shannon熵的阈值选取方法存在无定义值和零值的缺陷,并且没有考虑目标和背景类内灰度的均匀性。为此,本文针对多目标(背景)图像分割问题,提出了基于最大倒数熵/倒数灰度熵和自适应双粒子群优化(Adaptive Chaotic Variation Particle Swarm Optimization,ACPSO)的多阈值选取方法。首先将最大倒数熵单阈值选取推广到多阈值选取;然后定义了倒数灰度熵,导出了基于最大倒数灰度熵的单阈值和多阈值选取公式;最后给出最大倒数熵/倒数灰度熵多阈值选取的ACPSO算法步骤,实现对多个阈值快速精确地寻优。实验结果表明,与现有的同类方法—基于最大Shannon熵和粒子群优化(Particle Swarms Optimization,PSO)的多阈值选取方法相比,本文提出的方法有明显的优势,已应用于红外弱小目标检测中的阈值分割和卫星云图识别中的数字云图分割,取得了极佳的分割效果。