研究网络安全问题,针对网络入侵数据是一种小样本、高维和冗余数据,传统检测方法无法进行很好降维且基于大样本数据,因此入侵检测率低。为了提高网络入侵检测率和网络安全,提出一种主成分分析(PCA)的支持向量机(SVM)网络入侵检测方法(PCA-SVM)。PCA-SVM首先通过PCA对网络入侵原始数据进行维数和消除冗余信息处理,减少了支持向量机的输入,采用粒子算法对支持向量机参数进行优化,获得最优网络入侵支持向量机检测模型,最后最优支持向量机模型对网络入侵数据进行测试。采用网络数据集在Matlab平台上对PCA-SVM算法进行仿真,结果表明,采用PCA-SVM加快了网络入侵检测速度,提高了检测率,降低了网络入侵漏报率,为网络入侵检测提供了一种实时检测工具。