变参数QPSO算法优化神经网络的短期电力负荷预测

被引:4
作者
王超
李森
机构
[1] 河南工业职业技术学院
关键词
电力负荷; RBF神经网络; 变参数; 量子粒子群算法; 相空间重构;
D O I
暂无
中图分类号
TM715 [电力系统规划]; TP183 [人工神经网络与计算];
学科分类号
摘要
为了提高电力负荷预测精度,提出了一种变参数量子粒子群(VPQPSO)算法优化RBF神经网络的短期负荷预测模型(VPQPSO-RBFNN)。首先利用电力负荷的混沌性,对短期负荷时间序列进行相空间重构;然后采用变参数QPSO算法优化RBF神经网络参数对重构后的短期负荷时间序列进行学习,建立短期电力负荷最优预测模型;最后采用对某地区短期电力负荷进行预测。VPQPSO-RBFNN可以准确描述复杂多变的电力负荷变化趋势,提高了电力负荷的预测精度,仿真结果验证了VPQPSO-RBFNN可以用于电力系统负荷预测。
引用
收藏
页码:782 / 786
页数:5
相关论文
共 9 条