大数据下机械智能故障诊断的机遇与挑战

被引:395
作者
雷亚国 [1 ]
贾峰 [1 ]
孔德同 [2 ]
林京 [1 ]
邢赛博 [1 ]
机构
[1] 西安交通大学机械制造系统工程国家重点实验室
[2] 华电电力科学研究院
关键词
机械装备; 智能故障诊断; 大数据;
D O I
暂无
中图分类号
TH17 [机械运行与维修];
学科分类号
摘要
机械故障是风力发电设备、航空发动机、高档数控机床等大型机械装备安全可靠运行的"潜在杀手"。故障诊断是保障机械装备安全运行的"杀手锏"。由于诊断的装备量大面广、每台装备测点多、数据采样频率高、装备服役历时长,所以获取了海量的诊断数据,推动故障诊断领域进入了"大数据"时代。而机械智能故障诊断有望成为大数据下诊断机械装备故障的"一把利器"。与此同时,大数据给机械智能故障诊断的深入研究和应用提供了新的机遇:"数据为王"的学术思想有望成为主流、诊断整机或系统级对象成为可能、全面解析故障演化过程成为趋势等;但也遇到了新的挑战:数据大而不全呈"碎片化"、故障特征提取受制于人为经验、浅层诊断模型诊断精度低等。阐述了机械智能故障诊断大数据的特点;从信号获取、特征提取、故障识别与预测三个环节,综述了机械智能故障诊断的国内外研究进展和发展动态;指出了机械智能故障诊断理论与方法在大数据背景下的挑战;最后讨论了应对这些挑战的解决途径与发展趋势。
引用
收藏
页码:94 / 104
页数:11
相关论文
共 64 条
[51]   Industrial implementation of intelligent system techniques for nuclear power plant condition monitoring [J].
West, G. M. ;
McArthur, S. D. J. ;
Towle, D. .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (08) :7432-7440
[52]   Evaluation of the use of envelope analysis and DWT on AE signals generated from degrading shafts [J].
Gu, Dongsik ;
Kim, Jaegu ;
Kelimu, Tulugan ;
Huh, Sun-Chul ;
Choi, Byeong-Keun .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2012, 177 (19) :1683-1690
[53]  
Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions[J] . P. Borghesani,P. Pennacchi,R.B. Randall,N. Sawalhi,R. Ricci.Mechanical Systems and Signal Processing . 2012
[54]   An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring [J].
Tian, Zhigang .
JOURNAL OF INTELLIGENT MANUFACTURING, 2012, 23 (02) :227-237
[55]  
Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines[J] . Ruqiang Yan,Yongbin Liu,Robert X. Gao.Mechanical Systems and Signal Processing . 2011
[56]  
Machine remaining useful life prediction: An integrated adaptive neuro-fuzzy and high-order particle filtering approach[J] . Chaochao Chen,George Vachtsevanos,Marcos E. Orchard.Mechanical Systems and Signal Processing . 2011
[57]   A Comparison Study Between Acoustic Sensors for Bearing Fault Detection Under Different Speed and Load Using a Variety of Signal Processing Techniques [J].
Rezaei, Aida ;
Dadouche, Azzedine ;
Wickramasinghe, Viresh ;
Dmochowski, Waldemar .
TRIBOLOGY TRANSACTIONS, 2011, 54 (02) :179-186
[58]  
Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection[J] . Meik Schlechtingen,Ilmar Ferreira Santos.Mechanical Systems and Signal Processing . 2010 (5)
[59]  
Prognostic modelling options for remaining useful life estimation by industry[J] . J.Z. Sikorska,M. Hodkiewicz,L. Ma.Mechanical Systems and Signal Processing . 2010 (5)
[60]  
Electrical motor current signal analysis using a modified bispectrum for fault diagnosis of downstream mechanical equipment[J] . F. Gu,Y. Shao,N. Hu,A. Naid,A.D. Ball.Mechanical Systems and Signal Processing . 2010 (1)