数字孪生与深度学习融合驱动的采煤机健康状态预测

被引:49
作者
丁华 [1 ,2 ]
杨亮亮 [1 ,2 ]
杨兆建 [1 ,2 ]
王义亮 [1 ,2 ]
机构
[1] 太原理工大学机械与运载工程学院
[2] 煤矿综采装备山西省重点实验室
关键词
数字孪生; 深度学习; 采煤机; 健康预测; 剩余寿命预测;
D O I
暂无
中图分类号
TD421.6 [];
学科分类号
0819 ;
摘要
针对处于恶劣工作环境的采煤机状态预测与维护困难的问题,结合数字孪生高逼真度行为仿真特性和深度学习强大的数据挖掘能力,提出数字孪生与深度学习融合驱动的采煤机健康状态预测方法。基于物理空间多物理参数构建采煤机数字孪生体,通过在虚拟空间的可视化展示与分析实现健康状态预判;建立基于深度学习的采煤机关键零件剩余寿命预测模型,实现实时监测数据驱动下的零件剩余寿命的在线预测;综合数字孪生体状态和剩余寿命值,实现采煤机健康状态预测。通过试验验证了该方法的有效性,为采煤机健康状态预测与管理提供新思路。
引用
收藏
页码:815 / 823
页数:9
相关论文
共 23 条
[11]   Virtual monitoring method for hydraulic supports based on digital twin theory [J].
Xie, Jiacheng ;
Wang, Xuewen ;
Yang, Zhaojian ;
Hao, Shangqing .
MINING TECHNOLOGY-TRANSACTIONS OF THE INSTITUTIONS OF MINING AND METALLURGY, 2019, 128 (02) :77-87
[12]   Digital twin-based process reuse and evaluation approach for smart process planning [J].
Jinfeng Liu ;
Honggen Zhou ;
Guizhong Tian ;
Xiaojun Liu ;
Xuwen Jing .
The International Journal of Advanced Manufacturing Technology, 2019, 100 :1619-1634
[13]  
A sensing identification method for shearer cutting state based on modified multi-scale fuzzy entropy and support vector machine[J] . Lei Si,Zhongbin Wang,Xinhua Liu,Chao Tan.Engineering Applications of Artificial Intelligen . 2019
[14]   The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor [J].
Nikolakis, Nikolaos ;
Alexopoulos, Kosmas ;
Xanthakis, Evangelos ;
Chryssolouris, George .
INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2019, 32 (01) :1-12
[15]  
Dynamic Evaluation Method of Machining Process Planning Based on Digital Twin[J] . Jinfeng Liu,Honggen Zhou,Xiaojun Liu,Guizhong Tian,Mingfang Wu,Liping Cao,Wei Wang.IEEE Access . 2019
[16]   Experimentable Digital Twins-Streamlining Simulation-Based Systems Engineering for Industry 4.0 [J].
Schluse, Michael ;
Priggemeyer, Marc ;
Atorf, Linus ;
Rossmann, Juergen .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (04) :1722-1731
[17]   Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks [J].
Zhao, Rui ;
Wang, Dongzhe ;
Yan, Ruqiang ;
Mao, Kezhi ;
Shen, Fei ;
Wang, Jinjiang .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (02) :1539-1548
[18]  
Remaining Useful Life Prediction of Aircraft Engine based on Degradation Pattern Learning[J] . Zeqi Zhao,Bin Liang,Xueqian Wang,Weining Lu.Reliability Engineering and System Safety . 2017
[19]  
Multi-sensor data fusion identification for shearer cutting conditions based on parallel quasi-Newton neural networks and the Dempster-Shafer theory .2 Si L,Wang Z,Liu X.et al. Sensors . 2015
[20]   边缘计算:万物互联时代新型计算模型 [J].
施巍松 ;
孙辉 ;
曹杰 ;
张权 ;
刘伟 .
计算机研究与发展, 2017, 54 (05) :907-924