为解决图像背景复杂造成图像检索效果差的问题,提出了一种结合主体检测的图像检索方法。该方法首先训练用于目标检测的深度卷积神经网络模型,利用训练好的模型检测查询图像中的物体类别、类别概率和其所在区域坐标及特征。根据物体的类别概率和其所在区域的坐标判断图像主体后,在数据库中查找和主体类别相同的图像。计算查询图像与检索的同类别图像之间区域特征的余弦距离,结合类别概率对所有检索图像进行打分排序,返回分值最高的前10幅图像作为检索结果。最后在VCO2007数据集和自己收集的书页数据集上进行算法验证。实验结果表明,在随机选取的1 000幅测试图片检索结果的全正确率为96.5%,比现有方法提升了6.6个百分点。本文方法可有效排除图像背景的干扰,得到更加准确的检索结果和定位精度。