Selective Search for Object Recognition

被引:4373
作者
Uijlings, J. R. R. [1 ]
van de Sande, K. E. A. [2 ]
Gevers, T. [2 ]
Smeulders, A. W. M. [2 ]
机构
[1] Univ Trento, Trento, Italy
[2] Univ Amsterdam, Amsterdam, Netherlands
关键词
SCALE;
D O I
10.1007/s11263-013-0620-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the problem of generating possible object locations for use in object recognition. We introduce selective search which combines the strength of both an exhaustive search and segmentation. Like segmentation, we use the image structure to guide our sampling process. Like exhaustive search, we aim to capture all possible object locations. Instead of a single technique to generate possible object locations, we diversify our search and use a variety of complementary image partitionings to deal with as many image conditions as possible. Our selective search results in a small set of data-driven, class-independent, high quality locations, yielding 99% recall and a Mean Average Best Overlap of 0.879 at 10,097 locations. The reduced number of locations compared to an exhaustive search enables the use of stronger machine learning techniques and stronger appearance models for object recognition. In this paper we show that our selective search enables the use of the powerful Bag-of-Words model for recognition. The selective search software is made publicly available (Software: http://disi.unitn.it/similar to uijlings/SelectiveSearch.html).
引用
收藏
页码:154 / 171
页数:18
相关论文
共 37 条
  • [1] Measuring the Objectness of Image Windows
    Alexe, Bogdan
    Deselaers, Thomas
    Ferrari, Vittorio
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) : 2189 - 2202
  • [2] Alexe B, 2010, PROC CVPR IEEE, P73, DOI 10.1109/CVPR.2010.5540226
  • [3] Contour Detection and Hierarchical Image Segmentation
    Arbelaez, Pablo
    Maire, Michael
    Fowlkes, Charless
    Malik, Jitendra
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) : 898 - 916
  • [4] Constrained Parametric Min-Cuts for Automatic Object Segmentation
    Carreira, Joao
    Sminchisescu, Cristian
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 3241 - 3248
  • [5] Chum O., 2007, 2007 IEEE C COMPUTER, P1
  • [6] Mean shift: A robust approach toward feature space analysis
    Comaniciu, D
    Meer, P
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) : 603 - 619
  • [7] Csurka G., 2004, ECCV STAT LEARNING C
  • [8] Histograms of oriented gradients for human detection
    Dalal, N
    Triggs, B
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 886 - 893
  • [9] Endres I, 2010, LECT NOTES COMPUT SC, V6315, P575, DOI 10.1007/978-3-642-15555-0_42
  • [10] Everingham M., 2012, The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results