Mean shift: A robust approach toward feature space analysis

被引:7556
作者
Comaniciu, D
Meer, P
机构
[1] Siemens Corp Res, Imaging & Visualizat Dept, Princeton, NJ 08540 USA
[2] Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
mean shift; clustering; image segmentation; image smoothing; feature space; low-level vision;
D O I
10.1109/34.1000236
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density. The relation of the mean shift procedure to the Nadaraya-Watson estimator from kernel regression and the robust M-estimators of location is also established. Algorithms for two low-level vision tasks, discontinuity preserving smoothing and image segmentation, are described as applications. In these algorithms, the only user set parameter is the resolution of the analysis and either gray level or color images are accepted as input. Extensive experimental results illustrate their excellent performance.
引用
收藏
页码:603 / 619
页数:17
相关论文
共 68 条
  • [1] Aggarwal G, 2000, PROC CVPR IEEE, P255, DOI 10.1109/CVPR.2000.854802
  • [2] Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation
    Bajcsy, R
    Lee, SW
    Leonardis, A
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1996, 17 (03) : 241 - 272
  • [3] BARASH D, IN PRESS IEEE T PATT
  • [4] Bertsekas DP, 1997, J. Oper. Res. Soc., V48, P334, DOI 10.1057/palgrave.jors.2600425
  • [5] Robust anisotropic diffusion
    Black, MJ
    Sapiro, G
    Marimont, DH
    Heeger, D
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) : 421 - 432
  • [6] Real time face and object tracking as a component of a perceptual user interface
    Bradski, GR
    [J]. FOURTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION - WACV'98, PROCEEDINGS, 1998, : 214 - 219
  • [7] MEAN SHIFT, MODE SEEKING, AND CLUSTERING
    CHENG, YZ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (08) : 790 - 799
  • [8] Data sharpening as a prelude to density estimation
    Choi, E
    Hall, P
    [J]. BIOMETRIKA, 1999, 86 (04) : 941 - 947
  • [9] Chu CK, 1998, J AM STAT ASSOC, V93, P526, DOI 10.2307/2670100
  • [10] Comaniciu D., 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision, P1197, DOI 10.1109/ICCV.1999.790416