数字图像处理技术在农作物病虫草识别中的应用

被引:30
作者
管泽鑫 [1 ]
姚青 [1 ]
杨保军 [2 ]
胡洁 [1 ]
唐健 [2 ]
机构
[1] 浙江理工大学信息电子学院
[2] 中国水稻研究所水稻生物学国家重点实验室
关键词
数字图像处理; 农作物; 病虫草; 识别;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
综述了近年来国内外在农作物病虫草识别中应用的主要图像处理方法,包括颜色空间区分法、纹理特征分析法、形态特征分析法、小波分析法、多种参数结合分析法以及特殊图像的分析法,概述了各种方法的原理,比较了各种处理方法的优缺点,并对相关的模式识别方法做了简要概括,最后指出目前研究存在的问题及今后的研究方向。
引用
收藏
页码:2349 / 2358
页数:10
相关论文
共 75 条
  • [31] Detection of small pests on vegetable leaves using GLCM. Murakami S,Homma K,Koike T. American Society of Agricultural Engineers Paper Number 053136 .
  • [32] Color feature extraction by mans of discriminant analysis for wed segmentation. Jafari A,Mohtasebi S S,Jahromi H E,Omid M. American Society of Agricultural Engineers Paper Number 043059 .
  • [33] Crop/weed discrimination in perspective agronomic images. Ch.G‘ee,J.Bossu,G.Jones,F.Truchetet. Computers and Electronics in Agriculture . 2008
  • [34] Avision-basedmethodfor weedsidentificationthroughthe Bayesian decisiontheory. Tellaeche A,Burgos-Artizzu X P,Pajares G,et al. Pattern Recognition . 2008
  • [35] Large-scale investigation of weed seed identification by machine vision. Pablo.M Granitto,Pablo EVerdes,H.Alejandro.Ceccatto. Computers and Electronics in Agriculture . 2005
  • [36] Identification of citrus disease using color texture features and discriminant analysis. R. Pydipati,T. F. Burks, et al. Computers and Electronics in Agriculture . 2006
  • [37] statistical and neural network classifiers for citrus disease detection suing machine vision. R. Pydipati,T. F. Burks, et al. Transactions of the ASME .
  • [38] Backpropagation neural network design and evaluation for classifying weed species using color image texture. Burks,TF,Shearer,SA,Gates,RS,Donohue,KD. Transactions of the American Society of Agricultural Engineers . 2000
  • [39] Classification of Broadleaf and Grass weeds using Gabor wavelets and an artificial neural network. L.Tang,L.Tian,B.L.Steward. Transactions of the ASME . 2003
  • [40] Weed and crop discrimination using image analysis and artificial intelligence methods. Aitkenhead,MJ,Dalgetty,IA,Mullins,CE,McDonald,AJS,Strachan,NJC. Comput Electron Agri . 2003