针对无人机航拍电力线图像环境背景复杂、电力线目标细弱导致目标识别率低的问题,提出了一种可迭代运行的多向自相关(iterable multidirectional autocorrelation,IMA)增强方法.该方法根据航拍图像中电力线目标的局部纵向及横向灰度分布特征设计有效的滤波模板,用方向滤波的结果进行自相关增强.同时,这种自我增强可以多次迭代运行以达到满意的图像增强效果.通过一系列实验将Canny、Hessian与IMA方法的增强结果进行对比,实验结果显示,所提出的IMA方法比Canny和Hessian方法更适于无人机航拍电力线图像的增强操作.IMA方法不但运算速度快,而且能在大幅减弱航拍图像中复杂环境背景的同时增强电力线目标,从而有效提高图像的电力线目标检测识别率.