混频投资者情绪与股票价格行为

被引:35
作者
姚尧之 [1 ]
王坚强 [1 ]
刘志峰 [2 ]
机构
[1] 中南大学商学院
[2] 海南大学经济与管理学院
基金
海南省自然科学基金;
关键词
投资者情绪; 混频数据; MIDAS; 已实现波动;
D O I
暂无
中图分类号
F832.51 [];
学科分类号
1201 ; 020204 ;
摘要
采用混频数据抽样模型(MIDAS)研究了混频投资者情绪对中国股市收益率及其波动的影响.通过构建日度、周度及月度这三种不同频率的投资者情绪,实证结果发现,混频情绪对当期收益率及其波动都存在显著的正向影响,并且与传统回归模型相比,MIDAS模型具有更强的解释能力.本文进一步使用GARCH-MIDAS模型研究了混频情绪对收益率波动长期成分的影响,发现混频情绪能够显著影响收益的长期波动.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 32 条
[11]  
The information content of option-implied information for volatility forecasting with investor sentiment[J] . Sung Won Seo,Jun Sik Kim.Journal of Banking and Finance . 2014
[12]   Does mixed-frequency investor sentiment impact stock returns? Based on the empirical study of MIDAS regression model [J].
Yang, Chunpeng ;
Zhang, Rengui .
APPLIED ECONOMICS, 2014, 46 (09) :966-972
[13]  
Investor sentiment and return predictability of disagreement[J] . Jun Sik Kim,Doojin Ryu,Sung Won Seo.Journal of Banking and Finance . 2014
[14]   STOCK MARKET VOLATILITY AND MACROECONOMIC FUNDAMENTALS [J].
Engle, Robert F. ;
Ghysels, Eric ;
Sohn, Bumjean .
REVIEW OF ECONOMICS AND STATISTICS, 2013, 95 (03) :776-797
[15]  
Investor sentiment and the mean–variance relation[J] . Jianfeng Yu,Yu Yuan.Journal of Financial Economics . 2010 (2)
[16]   Investor sentiment and the cross-section of stock returns [J].
Baker, Malcolm ;
Wurgler, Jeffrey .
JOURNAL OF FINANCE, 2006, 61 (04) :1645-1680
[17]  
Predicting volatility: getting the most out of return data sampled at different frequencies[J] . Eric Ghysels,Pedro Santa-Clara,Rossen Valkanov.Journal of Econometrics . 2005 (1)
[18]   There is a risk-return trade-off after all [J].
Ghysels, E ;
Santa-Clara, P ;
Valkanov, R .
JOURNAL OF FINANCIAL ECONOMICS, 2005, 76 (03) :509-548
[19]   Investor sentiment and asset valuation [J].
Brown, GW ;
Cliff, MT .
JOURNAL OF BUSINESS, 2005, 78 (02) :405-440
[20]  
Market liquidity as a sentiment indicator[J] . Malcolm Baker,Jeremy C Stein.Journal of Financial Markets . 2003 (3)