关于桁架结构拓扑优化中的奇异最优解

被引:46
作者
程耿东
机构
[1] 大连理工大学工业装备结构分析国家重点实验室!辽宁大连
关键词
拓扑; 最佳化; 桁架; 约束/奇异性; 最优解;
D O I
暂无
中图分类号
TU31 [结构理论、计算];
学科分类号
摘要
回顾了结构拓扑优化奇异最优解的研究 ,着重介绍了应力函数的求解问题 :应力函数的不连续性可以解释受应力约束的桁架拓扑优化的奇异最优解问题 ;这类问题的可行区是由不同维数的可行子区域组成 ,奇异最优解位于退化的低维可行区的端点且和其他子可行区连通 ;具有不同性态约束的拓扑优化问题有本质差别 ,求解时需要不同的松弛处理 .还介绍了可求得奇异最优解的松弛、延拓算法
引用
收藏
页码:379 / 383
页数:5
相关论文
共 14 条
  • [1] A new approach for the solution of singular optimum in structural topology optimization[J] . Guo Xu,Cheng Gengdong.Acta Mechanica Sinica . 1997 (2)
  • [2] Some shortcomings in Michell's truss theory[J] . G. I. N. Rozvany.Structural Optimization . 1996 (4)
  • [3] ε-relaxed approach in structural topology optimization[J] . G. D. Cheng,X. Guo.Structural Optimization . 1997 (4)
  • [4] Difficulties in truss topology optimization with stress, local buckling and system stability constraints[J] . G. I. N. Rozvany.Structural Optimization . 1996 (3)
  • [5] Stress-based topology optimization[J] . R. J. Yang,C. J. Chen.Structural Optimization . 1996 (2)
  • [6] Difficulties in truss topology optimization with stress and local buckling constraints
    Zhou, M
    [J]. STRUCTURAL OPTIMIZATION, 1996, 11 (02): : 134 - 136
  • [7] Some aspects of truss topology optimization[J] . G. Cheng.Structural Optimization . 1995 (3)
  • [8] Generalized Michell structures — exact least-weight truss layouts for combined stress and displacement constraints: Part I — General theory for plane trusses[J] . G. I. N. Rozvany,T. Birker.Structural Optimization . 1995 (3)
  • [9] ON SINGULAR TOPOLOGIES IN EXACT LAYOUT OPTIMIZATION
    ROZVANY, GIN
    BIRKER, T
    [J]. STRUCTURAL OPTIMIZATION, 1994, 8 (04): : 228 - 235
  • [10] Numerical performance of two formulations of truss topology optimization[J] . Cheng Gengdong,Jiang Zheng.Acta Mechanica Sinica . 1994 (4)