基于典型因果推断算法的无线网络性能优化

被引:3
作者
郝志峰 [1 ,2 ]
陈薇 [1 ]
蔡瑞初 [1 ]
黄瑞慧 [3 ]
温雯 [1 ]
王丽娟 [1 ]
机构
[1] 广东工业大学计算机学院
[2] 佛山科学技术学院数学与大数据学院
[3] 广东南方通信建设有限公司
基金
广东省科技计划; 广东省自然科学基金;
关键词
典型相关分析; 因果推断; 线性非高斯非循环模型; 无线网络性能优化;
D O I
暂无
中图分类号
TN92 [无线通信];
学科分类号
080402 ; 080904 ; 0810 ; 081001 ;
摘要
现有的无线网络性能优化方法主要基于指标间的相关关系分析,无法有效指导网络优化等干预行为。为此,提出典型因果推断(CCI)算法,并将其应用于无线网络性能优化。首先,针对无线网络性能由大量相关指标体现这一特性,采用典型相关分析(CCA)方法,提取指标中蕴含的原子事件;然后再采用因果推断方法,构建原子事件间的因果关系网络。通过上述两个阶段反复迭代,确定原子事件间的因果关系网络,为无线网络性能优化提出一个较为可靠和有效的依据。最后通过模拟实验验证了CCI算法的有效性,在某城市3万多个移动基站数据上发现了一批有意义的无线网络指标间的因果关系。
引用
收藏
页码:2114 / 2120
页数:7
相关论文
共 23 条
[11]  
Justifying information-geometric causal inference. JANZING D,STEUDEL B,SHAJARISALES N,et al. Measures of Complexity . 2015
[12]  
Overlapping decomposition for causal graphicalmodeling. Han L,Song G,Cong G, et al. Proceedings of the18th ACM SIGKDD international conferenceon Knowledge discovery and data mining . 2012
[13]  
Causality:Models,Reasoning and Inference. PEARL J. . 2009
[14]  
Nonlinear causal discovery with additive noise models. HOYER P O,JANZING D,MOOIJ J M,et al. Advances in Neural Information Processing Systems 21 . 2008
[15]  
DirectLiNGAM: A direct method for learning a linear non-gaussian structural equation model. Shimizu, Shohei,Inazumi, Takanori,Sogawa, Yasuhiro,Hyv?rinen, Aapo,Kawahara, Yoshinobu,Washio, Takashi,Hoyer, Patrik O.,Bollen, Kenneth. Journal of Machine Learning Research . 2011
[16]  
SADA:A general framework to support robust causation discovery. Cai R,Zhang Z,Hao Z. JMLR Workshop and Conference Proceedings (Proc.30th International Conference on Machine Learning,ICML 2013) . 2013
[17]   The max-min hill-climbing Bayesian network structure learning algorithm [J].
Tsamardinos, Ioannis ;
Brown, Laura E. ;
Aliferis, Constantin F. .
MACHINE LEARNING, 2006, 65 (01) :31-78
[18]  
BASSUM: A Bayesian semi-supervised method for classification feature selection[J] . Ruichu Cai,Zhenjie Zhang,Zhifeng Hao. &nbspPattern Recognition . 2010 (4)
[19]  
Information-geometric approach to inferring causal directions[J] .  &nbspArtificial Intelligence . 2012
[20]  
Causal gene identification using combinatorial V-structure search[J] . Ruichu Cai,Zhenjie Zhang,Zhifeng Hao. &nbspNeural Networks . 2013