研究支持向量机模型优化问题,支持向量机的参数选择决定了其学习性能和泛化能力,由于在参数的选择范围内可选择的数量很多,在多个参数中进和盲目搜索最优参数是需要极大的时间代价,并且很难得到最优参数。常用的支持向量机优化方法有遗传算法、粒子群算法都存在易陷入局部极值,优化效果较差。为解决支持向量机参数寻优问题,提出一种基于混沌粒子群的支持向量机参数选择方法。将混沌理论引入粒子群优化算法中,从而提高种群的多样性和粒子搜索的遍历性,从而有效地提高了PSO算法的收敛速度和精度,得了优化支持向量机模型。并以信用卡案例数据作为研究对象进行了仿真,实验结果表明,混沌粒子群优化的SVM分类器比传统算法优化的SVM分类器的精度高和更高的效率,应用效果好。