高光谱图像稀疏信息处理综述与展望

被引:46
作者
张良培 [1 ]
李家艺 [1 ,2 ]
机构
[1] 武汉大学测绘遥感信息工程国家重点实验室
[2] 武汉大学遥感信息工程学院
基金
国家自然科学基金重点项目;
关键词
高光谱图像处理与分析; 稀疏表示; 高维信号处理; 图像质量改善; 影响分类;
D O I
暂无
中图分类号
TP751 [图像处理方法];
学科分类号
081002 ;
摘要
高光谱成像技术具有光谱连续、图谱合一,能够以较高的光谱诊断能力对地物目标进行精细化解译,可以大幅增强地物信息的提取能力。充分利用高光谱遥感图像丰富的空间、谱信息,进行观测目标地物的精细化解译,成为近年来遥感领域的研究热点和前沿领域,并在多个相关领域具有巨大的应用价值和广阔的发展前景。本文结合高光谱图像成像特点,对基于稀疏表示理论的高光谱图像处理与分析方法进行综述,概括了高光谱图像处理与分析主要研究,并对各个研究领域与方向进行分析和评价,最后对各研究领域发展提出建议和展望。
引用
收藏
页码:1091 / 1101
页数:11
相关论文
共 15 条
[1]  
An image-based endmember bundle extraction algorithm using reconstruction error for hyperspectral imagery[J] . Mingming Xu,Liangpei Zhang,Bo Du,Lefei Zhang.Neurocomputing . 2016
[2]  
A New Framework for Remote Sensing Image Super-resolution: Sparse Representation-based Method by Processing Dictionaries with Multi-type Features[J] . Wei Wu,Xiaomin Yang,Kai Liu,Yiguang Liu,Binyu Yan,Hua hua.Journal of Systems Architecture . 2015
[3]  
Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification[J] . Jiayi Li,Hongyan Zhang,Liangpei Zhang.ISPRS Journal of Photogrammetry and Remote Sensing . 2014
[4]  
Low-rank representation for 3D hyperspectral images analysis from map perspective[J] . Yuan Yuan,Min Fu,Xiaoqiang Lu.Signal Processing . 2014
[5]  
A locally adaptive L 1 ? L 2 norm for multi-frame super-resolution of images with mixed noise and outliers[J] . Linwei Yue,Huanfeng Shen,Qiangqiang Yuan,Liangpei Zhang.Signal Processing . 2014
[6]   ROBUST SUBSPACE CLUSTERING [J].
Soltanolkotabi, Mahdi ;
Elhamifar, Ehsan ;
Candes, Emmanuel J. .
ANNALS OF STATISTICS, 2014, 42 (02) :669-699
[7]  
Hyperspectral imagery super-resolution by sparse representation and spectral regularization[J] . Yongqiang Zhao,Jinxiang Yang,Qingyong Zhang,Lin Song,Yongmei Cheng,Quan Pan.EURASIP Journal on Advances in Signal Processing . 2011 (1)
[8]  
Sparsity preserving projections with applications to face recognition[J] . Lishan Qiao,Songcan Chen,Xiaoyang Tan.Pattern Recognition . 2009 (1)
[9]  
Sparse principal component analysis via regularized low rank matrix approximation[J] . Haipeng Shen,Jianhua Z. Huang.Journal of Multivariate Analysis . 2007 (6)
[10]  
A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection[J] . I. Soltani Bozchalooi,Ming Liang.Journal of Sound and Vibration . 2007 (1)