One-step sparse estimates in nonconcave penalized likelihood models

被引:859
作者
Zou, Hui [1 ]
Li, Runze [2 ,3 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[3] Penn State Univ, Methodol Ctr, University Pk, PA 16802 USA
关键词
AIC; BIC; LASSO; one-step estimator; oracle properties; SCAD;
D O I
10.1214/009053607000000802
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Fan and Li propose a family of variable selection methods via penalized likelihood using concave penalty functions. The nonconcave penalized likelihood estimators enjoy the oracle properties, but maximizing the penalized likelihood function is computationally challenging, because the objective function is nondifferentiable and nonconcave. In this article, we propose a new unified algorithm based on the local linear approximation (LLA) for maximizing the penalized likelihood for a broad class of concave penalty functions. Convergence and other theoretical properties of the LLA algorithm are established. A distinguished feature of the LLA algorithm is that at each LLA step, the LLA estimator can naturally adopt a sparse representation. Thus, we suggest using the one-step LLA estimator from the LLA algorithm as the final estimates. Statistically, we show that if the regularization parameter is appropriately chosen, the one-step LLA estimates enjoy the oracle properties with good initial estimators. Computationally, the one-step LLA estimation methods dramatically reduce the computational cost in maximizing the nonconcave penalized likelihood. We conduct some Monte Carlo simulation to assess the finite sample performance of the one-step sparse estimation methods. The results are very encouraging.
引用
收藏
页码:1509 / 1533
页数:25
相关论文
共 36 条
  • [1] Regularization of wavelet approximations - Rejoinder
    Antoniadis, A
    Fan, J
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) : 964 - 967
  • [2] ONE-STEP HUBER ESTIMATES IN LINEAR-MODEL
    BICKEL, PJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (350) : 428 - 434
  • [3] BLACK A, 1987, VISUAL RECONSTRUCTIO
  • [4] Breiman L, 1996, ANN STAT, V24, P2350
  • [5] Hazard models with varying coefficients for multivariate failure time data
    Cai, Jianwen
    Fan, Jianqing
    Zhou, Haibo
    Zhou, Yong
    [J]. ANNALS OF STATISTICS, 2007, 35 (01) : 324 - 354
  • [6] Vairiable selection for multivariate failure time data
    Cai, JW
    Fan, JQ
    Li, RZ
    Zhou, HB
    [J]. BIOMETRIKA, 2005, 92 (02) : 303 - 316
  • [7] Efficient estimation and inferences for varying-coefficient models
    Cai, ZW
    Fan, JQ
    Li, RZ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (451) : 888 - 902
  • [8] Least angle regression - Rejoinder
    Efron, B
    Hastie, T
    Johnstone, I
    Tibshirani, R
    [J]. ANNALS OF STATISTICS, 2004, 32 (02) : 494 - 499
  • [9] Fan J., 2006, INT C MATHEMATICIANS, VIII, P595, DOI DOI 10.4171/022-3/31
  • [10] Local partial-likelihood estimation for lifetime data
    Fan, Jianqing
    Lin, Huazhen
    Zhou, Yong
    [J]. ANNALS OF STATISTICS, 2006, 34 (01) : 290 - 325