Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs).: 2.: The CNT-Fe/Co-MgAl2O4 system

被引:20
作者
Coquay, P
Flahaut, E
De Grave, E
Peigney, A
Vandenberghe, RE
Laurent, C
机构
[1] State Univ Ghent, NUMAT, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium
[2] Univ Toulouse 3, Ctr Interuniv Rech & Ingn Mat, CIRIMAT, UMR CNRS,INP 5085, F-31062 Toulouse, France
关键词
D O I
10.1021/jp052494y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A detailed Fe-57 Mossbauer study of the Mg0.8Fe0.2-yCoyAl2O4 (y = 0, 0.05, 0.1, 0.15, 0.2) solid solutions and of the CNT-Fe/Co-MgAl2O4 nanocomposite powders prepared by reduction in H-2-CH4 has allowed characterization of the different iron phases involved in the catalytic process of carbon nanotube (CNT) formation and to correlate these results with the carbon and CNT contents. The oxide precursors consist of defective spinels of general formulas (Mg(1-x-y)(2+)Fe(x-3 alpha)(2+)Fe(2 alpha)(3+)square(alpha)Co(y)(2+)Al(2)(3+))O-4(2-). The metallic phase in the CNT-Fe/Co-MgAl2O4 nanocomposite powders is mostly in the form of the ferromagnetic alpha-Fe/Co alloy with the desired composition. For high iron initial proportions, the additional formation of Fe3C and gamma-Fe-C is observed while for high cobalt initial proportions, the additional formation of a gamma-Fe/Co-C phase is favored. The higher yield of CNTs is observed for postreaction alpha-Fe0.50Co0.50 catalytic particles, which form no carbide and have a narrow size distribution. Alloying is beneficial for this system with respect to the formation of CNTs.
引用
收藏
页码:17825 / 17830
页数:6
相关论文
共 28 条
[1]   Iron-containing catalysts of methane decomposition: accumulation of filamentous carbon [J].
Avdeeva, LB ;
Reshetenko, TV ;
Ismagilov, ZR ;
Likholobov, VA .
APPLIED CATALYSIS A-GENERAL, 2002, 228 (1-2) :53-63
[2]   High specific surface area carbon nanotubes from catalytic chemical vapor deposition process [J].
Bacsa, RR ;
Laurent, C ;
Peigney, A ;
Bacsa, WS ;
Vaugien, T ;
Rousset, A .
CHEMICAL PHYSICS LETTERS, 2000, 323 (5-6) :566-571
[3]   Cold wall CVD generation of single-walled carbon nanotubes and in situ Raman scattering measurements of the growth stage [J].
Chiashi, S ;
Murakami, Y ;
Miyauchi, Y ;
Maruyama, S .
CHEMICAL PHYSICS LETTERS, 2004, 386 (1-3) :89-94
[4]   Synthesis of single-wall carbon nanotubes by catalytic decomposition of hydrocarbons [J].
Colomer, JF ;
Bister, G ;
Willems, I ;
Kónya, Z ;
Fonseca, A ;
Van Tendeloo, G ;
Nagy, JB .
CHEMICAL COMMUNICATIONS, 1999, (14) :1343-1344
[5]  
CONQUAY P, 2005, J PHYS CHEM B, V109, P17813
[6]   Mossbauer spectroscopy involved in the study of the catalytic growth of carbon nanotubes [J].
Coquay, P ;
De Grave, E ;
Vandenberghe, RE ;
Peigney, A ;
Laurent, C .
HYPERFINE INTERACTIONS, 2002, 139 (1-4) :289-296
[7]   From ceramic-matrix nanocomposites to the synthesis of carbon nanotubes [J].
Coquay, P ;
Laurent, C ;
Peigney, A ;
Quénard, O ;
De Grave, E ;
Vandenberghe, RE .
HYPERFINE INTERACTIONS, 2000, 130 (1-4) :275-299
[8]   Mossbauer spectroscopy study of MgAl2O4-matrix nanocomposite powders containing carbon nanotubes and iron-based nanoparticles [J].
Coquay, P ;
De Grave, E ;
Vandenberghe, RE ;
Dauwe, C ;
Flahaut, E ;
Laurent, C ;
Peigney, A ;
Rousset, A .
ACTA MATERIALIA, 2000, 48 (11) :3015-3023
[9]  
Ellis W.C., 1941, T AM SOC MET, V29, P415
[10]   Synthesis of single-walled carbon nanotube-Co-MgO composite powders and extraction of the nanotubes [J].
Flahaut, E ;
Peigney, A ;
Laurent, C ;
Rousset, A .
JOURNAL OF MATERIALS CHEMISTRY, 2000, 10 (02) :249-252