Quenched spin tunneling and diabolical points in magnetic molecules. 1. Symmetric configurations

被引:18
作者
Garg, A [1 ]
机构
[1] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.64.094413
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The perfect quenching of spin tunneling that has previously been discussed in terms of interfering instantons, and has recently been observed in the magnetic molecule Fe-8, is treated using a discrete phase integral (or Wentzel-Kramers-Brillouin) method. The simplest model Hamiltonian for the phenomenon leads to a Schrodinger equation that is a five-term recursion relation. This recursion relation is reflection symmetric when the magnetic field applied to the molecule is along the hard magnetic axis. A completely general Herring formula for the tunnel splittings for all reflection-symmetric five-term recursion relations is obtained. Using connection formulas for a nonclassical turning point that may be described as lying "under the barrier," and which underlies the oscillations in the splitting as a function of magnetic field. this Herring formula is transformed into two other formulas that express the splittings in terms of a small number of action and action like integrals. These latter formulas appear to be generally valid, even for problems where the recursion contains more than five terms. The results for the model Hamiltonian are compared with experiment, numerics, previous instanton based approaches, and the limiting case of no magnetic field.
引用
收藏
页数:15
相关论文
共 54 条
[51]   Landau-Zener method to study quantum phase interference of Fe8 molecular nanomagnets (invited) [J].
Wernsdorfer, W ;
Sessoli, R ;
Caneschi, A ;
Gatteschi, D ;
Cornia, A ;
Mailly, D .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :5481-5486
[52]   Quantum phase interference and parity effects in magnetic molecular clusters [J].
Wernsdorfer, W ;
Sessoli, R .
SCIENCE, 1999, 284 (5411) :133-135
[53]  
WIEGHARDT K, 1984, ANGEW CHEM INT EDIT, V23, P77
[54]   TUNNELING BETWEEN TORI IN PHASE-SPACE [J].
WILKINSON, M .
PHYSICA D, 1986, 21 (2-3) :341-354