Bayesian CART model search

被引:429
作者
Chipman, HA [1 ]
George, EI
McCulloch, RE
机构
[1] Univ Waterloo, Dept Stat, Waterloo, ON N2L 3G1, Canada
[2] Univ Texas, Dept MSIS, Ed & Molly Smith Chair Business Adm, Austin, TX 78712 USA
[3] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
关键词
binary trees; Markov chain Monte Carlo; mixture models; model selection; model uncertainty; stochastic search;
D O I
10.2307/2669832
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we put forward a Bayesian approach for finding classification and regression tree (CART) models. The two basic components of this approach consist of prior specification and stochastic search. The basic idea is to have the prior induce a posterior distribution that will guide the stochastic search toward more promising CART models. As the search proceeds, such models can then be selected with a variety of criteria, such as posterior probability, marginal likelihood, residual sum of squares or misclassification rates. Examples are used to illustrate the potential superiority of this approach over alternative methods.
引用
收藏
页码:935 / 948
页数:14
相关论文
共 18 条
  • [1] Breiman L., 1984, Classification and Regression Trees, DOI DOI 10.2307/2530946
  • [2] Buntine W., 1992, Statistics and Computing, V2, P63, DOI 10.1007/BF01889584
  • [3] CHIPMAN HA, 1998, 9803 U WAT DEP STAT
  • [4] Clark LA, 1992, Statistical Models in S
  • [5] DENISON DGT, IN PRESS BIOMETRIKA, V85
  • [6] George E.I., 1998, Encyclopedia of Statistical Sciences Update, V3
  • [7] Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    Green, PJ
    [J]. BIOMETRIKA, 1995, 82 (04) : 711 - 732
  • [8] HIERARCHICAL MIXTURES OF EXPERTS AND THE EM ALGORITHM
    JORDAN, MI
    JACOBS, RA
    [J]. NEURAL COMPUTATION, 1994, 6 (02) : 181 - 214
  • [9] LUTSKO JF, 1994, SELECTING MODELS DAT, V4, P453
  • [10] SOME COMMENTS ON CP
    MALLOWS, CL
    [J]. TECHNOMETRICS, 1973, 15 (04) : 661 - 675