Strict stability of high-order compact implicit finite-difference schemes: The role of boundary conditions for hyperbolic PDEs, II

被引:29
作者
Abarbanel, SS [1 ]
Chertock, AE
Yefet, A
机构
[1] Tel Aviv Univ, Sch Math Sci, Dept Appl Math, IL-69978 Tel Aviv, Israel
[2] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
关键词
hyperbolic PDEs; boundary conditions; stability; accuracy; error bounds;
D O I
10.1006/jcph.2000.6421
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper deals with the problem of systems of hyperbolic PDEs in one and two space dimensions, using the theory of part I [7]. (C) 2000 Academic Press.
引用
收藏
页码:67 / 87
页数:21
相关论文
共 7 条
[1]  
ABARBANEL SS, 2000, J COMPUT PHYS, V158, P1
[2]   TIME-STABLE BOUNDARY-CONDITIONS FOR FINITE-DIFFERENCE SCHEMES SOLVING HYPERBOLIC SYSTEMS - METHODOLOGY AND APPLICATION TO HIGH-ORDER COMPACT SCHEMES [J].
CARPENTER, MH ;
GOTTLIEB, D ;
ABARBANEL, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 111 (02) :220-236
[3]   THE STABILITY OF NUMERICAL BOUNDARY TREATMENTS FOR COMPACT HIGH-ORDER FINITE-DIFFERENCE SCHEMES [J].
CARPENTER, MH ;
GOTTLIEB, D ;
ABARBANEL, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 108 (02) :272-295
[4]  
CHERTOCK A, 1998, THESIS TEL AVIV U TE
[5]  
GUTAFSSON B, 1995, TIME DEPENDENT PROBL
[6]  
Turkel E, 1998, ART H ANT PROP LIB, P63
[7]  
YEFET A, IN PRESS APPL NUM MA