The stress-activated protein kinase pathways

被引:557
作者
Tibbles, LA [1 ]
Woodgett, JR [1 ]
机构
[1] Ontario Canc Inst, Div Expt Therapeut, Toronto, ON M5G 2M9, Canada
关键词
stress-activated protein kinase (SAPK); jun N-terminal kinase (JNK); p38; mitogen activated protein kinase (MAPK); apoptosis;
D O I
10.1007/s000180050369
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Part of the cellular response to toxins, physical stresses and inflammatory cytokines occurs by signalling via the stress-activated protein kinase (SAPK) and p38 reactivating kinase pathways. This results in modification of cellular gene expression. These stress-responsive kinase pathway are structurally similar, but functionally distinct, from the archetypal mitogen activated protein kinases (MAPKs or ERKs). The ERK pathway is a hierarchical cascade originating at the cell membrane with receptors for mitogens or growth factors, which recruit, via adapter proteins and exchange factors, the small guanosine triphosphatase (GTPase) Ras (see fig. 1). Ras activates raf, a serine threonine kinase, which activates MEK (MAPK/ERK kinase). MEK, in turn, phosphorylates and activates ERK1 and ERK2, which translocate to the nucleus and transactivate transcription factors, changing gene expression to promote growth, differentiation or mitosis. By transducing signals through a cascade of kinases, several options for control are introduced for amplifying and/or modifying the output signal. The SAPK and p38 pathways are also hierarchically arranged, but less is known about the upstream components and the downstream effects of stimulation of these pathways. Among the processes modulated by stress-responsive pathways are apoptosis, transformation, development, immune activation, inflammation and adaptation to environmental changes. This review outlines the upstream componentry of these pathways that interact with a variety of agonists to modify the activity of SAPK and p38, and explores the downstream functions of this activation.
引用
收藏
页码:1230 / 1254
页数:25
相关论文
共 374 条
[51]   A comparison of the substrate specificity of MAPKAP kinase-2 and MAPKAP kinase-3 and their activation by cytokines and cellular stress [J].
Clifton, AD ;
Young, PR ;
Cohen, P .
FEBS LETTERS, 1996, 392 (03) :209-214
[52]   G alpha(12) stimulates c-Jun NH2-terminal kinase through the small G proteins Ras and Rac [J].
Collins, LR ;
Minden, A ;
Karin, M ;
Brown, JH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (29) :17349-17353
[53]   Sphingolipid metabolites differentially regulate extracellular signal-regulated kinase and stress-activated protein kinase cascades [J].
Coroneos, E ;
Wang, YZ ;
Panuska, JR ;
Templeton, DJ ;
Kester, M .
BIOCHEMICAL JOURNAL, 1996, 316 :13-17
[54]   The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells [J].
Cortez, D ;
Reuther, G ;
Pendergast, AM .
ONCOGENE, 1997, 15 (19) :2333-2342
[55]   THE SMALL GTP-BINDING PROTEINS RAC1 AND CDC42 REGULATE THE ACTIVITY OF THE JNK/SAPK SIGNALING PATHWAY [J].
COSO, OA ;
CHIARIELLO, M ;
YU, JC ;
TERAMOTO, H ;
CRESPO, P ;
XU, NG ;
MIKI, T ;
GUTKIND, JS .
CELL, 1995, 81 (07) :1137-1146
[56]  
Coso OA, 1996, J BIOL CHEM, V271, P3963
[57]   T cell proliferation in response to interleukins 2 and 7 requires p38MAP kinase activation [J].
Crawley, JB ;
Rawlinson, L ;
Lali, FV ;
Page, TH ;
Saklatvala, J ;
Foxwell, BMJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (23) :15023-15027
[58]  
Crespo P, 1996, ONCOGENE, V13, P455
[59]   Purification and cDNA cloning of SAPKK3, the major activator of RK/p38 in stress- and cytokine-stimulated monocytes and epithelial cells [J].
Cuenda, A ;
Alonso, G ;
Morrice, N ;
Jones, M ;
Meier, R ;
Cohen, P ;
Nebreda, AR .
EMBO JOURNAL, 1996, 15 (16) :4156-4164
[60]   Differential activation of stress-activated protein kinase kinases SKK4/MKK7 and SKK1/MKK4 by the mixed-lineage kinase-2 and mitogen-activated protein kinase kinase (MKK) kinase-1 [J].
Cuenda, A ;
Dorow, DS .
BIOCHEMICAL JOURNAL, 1998, 333 :11-15