RETRACTED: Preferential degradation of oxidized proteins by the 20S proteasome may be inhibited in aging and in inflammatory neuromuscular diseases (Retracted Article. See vol 67, pg 2087, 2006)

被引:56
作者
Davies, KJA
Shringarpure, R
机构
[1] Univ So Calif, Ethel Percy Andrus Gerontol Ctr, Los Angeles, CA 90089 USA
[2] Univ So Calif, Div Mol & Computat Biol, Los Angeles, CA 90089 USA
关键词
D O I
10.1212/01.wnl.0000192308.43151.63
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Free radicals produced by chronic inflammation cause cumulative damage to cellular macromolecules and appear to contribute to senescence/aging, age-related disorders, and neuromuscular degenerative diseases such as inclusion-body myositis. Proteins are major targets for oxidative damage (in addition to DNA and lipids) and the accumulation of oxidized proteins has been reported in many aging and disease models. In young and healthy individuals, moderately oxidized soluble cell proteins are selectively and rapidly degraded by the 20S proteasome. The mechanism of selective proteolysis appears to depend upon oxidation-induced protein unfolding, with increasing surface hydrophobicity as (previously shielded) hydrophobic residues are exposed from the interior. The 20S proteasome can preferentially bind to and degrade such mildly oxidized, hydrophobic proteins without a need for ubiquitin targeting or ATP activation. Severely oxidized, aggregated, and crosslinked proteins, however, are poor substrates for degradation and actually inhibit the proteasome. During aging, and in many age-related diseases/disorders, the proteasome is progressively inhibited by binding to increasing levels of oxidized and cross-linked protein aggregates. Cellular aging and inflammatory neuromuscular degenerative diseases probably include both an increase in the generation of reactive oxygen species as well as a decline in proteasome activity, resulting in the progressive accumulation of oxidatively damaged protein aggregates that eventually contribute to cellular dysfunction and senescence.
引用
收藏
页码:S93 / S96
页数:4
相关论文
共 61 条
[1]   Protein oxidation and enzyme activity decline in old brown Norway rats are reduced by dietary restriction [J].
Aksenova, MV ;
Aksenov, MY ;
Carney, JM ;
Butterfield, DA .
MECHANISMS OF AGEING AND DEVELOPMENT, 1998, 100 (02) :157-168
[2]   Protein oxidation in aging, disease, and oxidative stress [J].
Berlett, BS ;
Stadtman, ER .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20313-20316
[3]   PROTEASES AND PROTEOLYSIS IN THE LYSOSOME [J].
BOHLEY, P ;
SEGLEN, PO .
EXPERIENTIA, 1992, 48 (02) :151-157
[4]   Insulin-like signaling, metabolism, stress resistance and aging in Caenorhabditis elegans [J].
Braeckman, BP ;
Houthoofd, K ;
Vanfleteren, JR .
MECHANISMS OF AGEING AND DEVELOPMENT, 2001, 122 (07) :673-693
[5]   Subcellular localization of proteasomes and their regulatory complexes in mammalian cells [J].
Brooks, P ;
Fuertes, G ;
Murray, RZ ;
Bose, S ;
Knecht, E ;
Rechsteiner, MC ;
Hendil, KB ;
Tanaka, K ;
Dyson, J ;
Rivett, AJ .
BIOCHEMICAL JOURNAL, 2000, 346 :155-161
[6]   Mitochondrial free radical generation, oxidative stress, and aging [J].
Cadenas, E ;
Davies, KJA .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 29 (3-4) :222-230
[7]   REVERSAL OF AGE-RELATED INCREASE IN BRAIN PROTEIN OXIDATION, DECREASE IN ENZYME-ACTIVITY, AND LOSS IN TEMPORAL AND SPATIAL MEMORY BY CHRONIC ADMINISTRATION OF THE SPIN-TRAPPING COMPOUND N-TERT-BUTYL-ALPHA-PHENYLNITRONE [J].
CARNEY, JM ;
STARKEREED, PE ;
OLIVER, CN ;
LANDUM, RW ;
CHENG, MS ;
WU, JF ;
FLOYD, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (09) :3633-3636
[8]   MODULATION OF THE HYDROPHOBICITY OF GLUTAMINE-SYNTHETASE BY MIXED-FUNCTION OXIDATION [J].
CERVERA, J ;
LEVINE, RL .
FASEB JOURNAL, 1988, 2 (10) :2591-2595
[9]   Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems [J].
Chao, CC ;
Ma, YS ;
Stadtman, ER .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (07) :2969-2974
[10]  
COUX O, 1996, ANNU REV BIOCHEM, V29, P10289