DNA polymerase I of Mycobacterium tuberculosis -: Functional role of a conserved aspartate in the hinge joining the M and N helices

被引:12
作者
Arrigo, CJ
Singh, K
Modak, MJ
机构
[1] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Biochem & Mol Biol, Newark, NJ 07103 USA
[2] Univ Med & Dent New Jersey, Grad Sch Biomed Sci, Newark, NJ 07103 USA
关键词
D O I
10.1074/jbc.M108536200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The highly conserved GXD sequence present in the Mycobacterium tuberculosis DNA polymerase I corresponds to a hinge region in the finger subdomain connecting M and N helices of Escherichia coli pol I. An examination of the crystal structures of pol I family polymerases reveals that the invariant aspartate of the hinge forms a salt bridge with the conserved arginine of the O-helix and an H-bond with Gln-708. To clarify the role of this region, we generated and characterized conserved and nonconserved mutant derivatives of this aspartate, the preceding glutamate and the GIn in TB pol I. For comparison, D732A mutein of pol I was also included. The muteins representing conserved aspartate (Asp-707 of TB pol I or Asp-732 of pol I) showed a strong K-m(dNTP) effect and minor alteration in K-d(DNA), with about 10-20-fold decrease in overall catalytic efficiency. The TB muteins, E706A and Q683A, have less pronounced deviations from the wild-type enzyme. Further examination of D707A of TB pol I showed no alteration in the processivity or the dideoxynucleotide sensitivity patterns. However, both TB pol D707A and homologous E. coli D732A failed to form a stable E-DNA-dNTP ternary complex. These results suggest that the aspartate in the hinge region is catalytically important and is required for dNTP binding and in the formation of a prepolymerase ternary complex.
引用
收藏
页码:1653 / 1661
页数:9
相关论文
共 25 条
[1]   DEOXYNUCLEOSIDE TRIPHOSPHATE AND PYROPHOSPHATE BINDING-SITES IN THE CATALYTICALLY COMPETENT TERNARY COMPLEX FOR THE POLYMERASE REACTION CATALYZED BY DNA-POLYMERASE-I (KLENOW FRAGMENT) [J].
ASTATKE, M ;
GRINDLEY, NDF ;
JOYCE, CM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (04) :1945-1954
[2]   CRYSTAL-STRUCTURES OF THE KLENOW FRAGMENT OF DNA-POLYMERASE-I COMPLEXED WITH DEOXYNUCLEOSIDE TRIPHOSPHATE AND PYROPHOSPHATE [J].
BEESE, LS ;
FRIEDMAN, JM ;
STEITZ, TA .
BIOCHEMISTRY, 1993, 32 (51) :14095-14101
[3]   STRUCTURE OF DNA-POLYMERASE-I KLENOW FRAGMENT BOUND TO DUPLEX DNA [J].
BEESE, LS ;
DERBYSHIRE, V ;
STEITZ, TA .
SCIENCE, 1993, 260 (5106) :352-355
[4]   Base miscoding and strand misalignment errors by mutator klenow polymerases with amino acid substitutions at tyrosine 766 in the O helix of the fingers subdomain [J].
Bell, JB ;
Eckert, KA ;
Joyce, CM ;
Kunkel, TA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (11) :7345-7351
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   COMPILATION, ALIGNMENT, AND PHYLOGENETIC-RELATIONSHIPS OF DNA-POLYMERASES [J].
BRAITHWAITE, DK ;
ITO, J .
NUCLEIC ACIDS RESEARCH, 1993, 21 (04) :787-802
[7]   AN ATTEMPT TO UNIFY THE STRUCTURE OF POLYMERASES [J].
DELARUE, M ;
POCH, O ;
TORDO, N ;
MORAS, D ;
ARGOS, P .
PROTEIN ENGINEERING, 1990, 3 (06) :461-467
[8]   Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution [J].
Doublié, S ;
Tabor, S ;
Long, AM ;
Richardson, CC ;
Ellenberger, T .
NATURE, 1998, 391 (6664) :251-258
[9]   Interaction of Escherichia coli DNA polymerase I (Klenow fragment) with primer-templates containing N-acetyl-2-aminofluorene or N-2-aminofluorene adducts in the active site [J].
Dzantiev, L ;
Romano, LJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (06) :3279-3284
[10]   A carboxylate triad is essential for the polymerase activity of Escherichia coli DNA polymerase I (Klenow fragment) -: Presence of two functional triads at the catalytic center [J].
Gangurde, R ;
Kaushik, N ;
Singh, H ;
Modak, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (26) :19685-19692