Synthesis and optical properties of europium-doped ZnS: Long-lasting phosphorescence from aligned nanowires

被引:60
作者
Cheng, BC [1 ]
Wang, ZG [1 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, Beijing 100083, Peoples R China
关键词
D O I
10.1002/adfm.200500092
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quasi-aligned Eu2+-doped wurtzite ZnS nanowires on Au-coated Si wafers have been successfully synthesized by a vapor deposition method under a weakly reducing atmosphere. Compared with the undoped counterpart, incorporation of the dopant gives a modulated composition and crystal structure, which leads to a preferred growth of the nanowires along the [0110] direction and a high density of defects in the nanowire hosts. The ion doping causes intense fluorescence and persistent phosphorescence in ZnS nanowires. The dopant Eu2+ ions form an isoelectronic acceptor level and yield a high density of bound excitions, which contribute to the appearance of the radiative recombination emission of the bound excitons and resonant Raman scattering at higher pumping intensity. Co-dopant Cl- ions can serve not only as donors, producing a donor-acceptor pair transition with the Eu2+ acceptor level, but can also form trap levels together with other defects, capture the photoionization electrons of Eu2+, and yield long-lasting (about 4 min), green phosphorescence. With decreasing synthesis time, the existence of more surface states in the nanowires forms a higher density of trap centers and changes the crystal-field strength around Eu2+. As a result, not only have an enhanced Eu2+ -4f(6)5d(1)-4f(7) intra-ion transition and a prolonged afterglow time been more effectively observed (by decreasing the nanowires' diameters), but also the Eu2+ related emissions are shifted to shorter wavelengths.
引用
收藏
页码:1883 / 1890
页数:8
相关论文
共 61 条
[1]   Upgrading the triboluminescence of ZnS:Mn film by optimization of sputtering and thermal annealing conditions [J].
Agyeman, O ;
Xu, CN ;
Suzuki, M ;
Zheng, XG .
JOURNAL OF MATERIALS RESEARCH, 2002, 17 (05) :959-963
[2]   Synthesis of CdS and ZnS nanowires using single-source molecular precursors [J].
Barrelet, CJ ;
Wu, Y ;
Bell, DC ;
Lieber, CM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (38) :11498-11499
[3]   PHOTO-LUMINESCENCE AND PHOTOINDUCED OXYGEN-ADSORPTION OF COLLOIDAL ZINC-SULFIDE DISPERSIONS [J].
BECKER, WG ;
BARD, AJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1983, 87 (24) :4888-4893
[4]   OPTICAL-PROPERTIES OF MANGANESE-DOPED NANOCRYSTALS OF ZNS [J].
BHARGAVA, RN ;
GALLAGHER, D ;
HONG, X ;
NURMIKKO, A .
PHYSICAL REVIEW LETTERS, 1994, 72 (03) :416-419
[5]   ZnS precipitation: morphology control [J].
Bredol, M ;
Merikhi, J .
JOURNAL OF MATERIALS SCIENCE, 1998, 33 (02) :471-476
[7]   Absorption and luminescence of the surface states in ZnS nanoparticles [J].
Chen, W ;
Wang, ZG ;
Lin, ZJ ;
Lin, LY .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (06) :3111-3115
[8]   Energy structure and fluorescence of Eu2+ in ZnS:Eu nanoparticles [J].
Chen, W ;
Malm, JO ;
Zwiller, V ;
Huang, YN ;
Liu, SM ;
Wallenberg, R ;
Bovin, JO ;
Samuelson, L .
PHYSICAL REVIEW B, 2000, 61 (16) :11021-11024
[9]   FREQUENCY AND DENSITY DEPENDENT RADIATIVE RECOMBINATION PROCESSES IN III-V SEMICONDUCTOR QUANTUM-WELLS AND SUPERLATTICES [J].
CINGOLANI, R ;
PLOOG, K .
ADVANCES IN PHYSICS, 1991, 40 (05) :535-623
[10]   Luminescence studies of localized gap states in colloidal ZnS nanocrystals [J].
Denzler, D ;
Olschewski, M ;
Sattler, K .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (05) :2841-2845