Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections

被引:1284
作者
Appay, V [1 ]
Dunbar, PR
Callan, M
Klenerman, P
Gillespie, GMA
Papagno, L
Ogg, GS
King, A
Lechner, F
Spina, CA
Little, S
Havlir, DV
Richman, DD
Gruener, N
Pape, G
Waters, A
Easterbrook, P
Salio, M
Cerundolo, V
McMichael, AJ
Rowland-Jones, SL
机构
[1] John Radcliffe Hosp, Inst Mol Med, MRC, Human Immunol Unit, Oxford OX3 9DU, England
[2] Peter Medawar Bldg Pathogen Res, Nuffield Dept Med, Oxford, England
[3] Univ Calif San Diego, La Jolla, CA 92093 USA
[4] San Diego VA Res Ctr AIDS & HIV Infect, San Diego, CA USA
[5] Inst Immunol, D-8000 Munich, Germany
[6] Guys Kings & St Thomas Sch Med, Dept HIV GUM, London, England
[7] Weston Educ Ctr, London, England
基金
英国医学研究理事会;
关键词
D O I
10.1038/nm0402-379
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The viruses HIV-1, Epstein Barr virus (EBV), cytomegalovirus ( CMV) and hepatitis C virus ( HCV) are characterized by the establishment of lifelong infection in the human host, where their replication is thought to be tightly controlled by virus-specific CD8(+) T cells. Here we present detailed studies of the differentiation phenotype of these cells, which can be separated into three distinct subsets based on expression of the costimulatory receptors CD28 and CD27. Whereas CD8(+) T cells specific for HIV, EBV and HCV exhibit similar characteristics during primary infection, there are significant enrichments at different stages of cellular differentiation in the chronic phase of persistent infection according to the viral specificity, which suggests that distinct memory T-cell populations are established in different virus infections. These findings challenge the current definitions of memory and effector subsets in humans, and suggest that ascribing effector and memory functions to subsets with different differentiation phenotypes is no longer appropriate.
引用
收藏
页码:379 / 385
页数:7
相关论文
共 44 条
[1]   Immunological memory and protective immunity: Understanding their relation [J].
Ahmed, R ;
Gray, D .
SCIENCE, 1996, 272 (5258) :54-60
[2]  
Altman JD, 1998, SCIENCE, V280, P1821
[3]  
ANDREWS DM, 2001, NATURE IMMUNOL, V22, P22
[4]   HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function [J].
Appay, V ;
Nixon, DF ;
Donahoe, SM ;
Gillespie, GMA ;
Dong, T ;
King, A ;
Ogg, GS ;
Spiegel, HML ;
Conlon, C ;
Spina, CA ;
Havlir, DV ;
Richman, DD ;
Waters, A ;
Easterbrook, P ;
McMichael, AJ ;
Rowland-Jones, SL .
JOURNAL OF EXPERIMENTAL MEDICINE, 2000, 192 (01) :63-75
[5]   Cytolytic mechanisms and expression of activation-regulating receptors on effector-type CD8+CD45RA+CD27- human T cells [J].
Baars, PA ;
do Couto, LMR ;
Leusen, JHW ;
Hooibrink, B ;
Kuijpers, TW ;
Lens, SMA ;
van Lier, RAW .
JOURNAL OF IMMUNOLOGY, 2000, 165 (04) :1910-1917
[6]   The CD8 response on autopilot [J].
Bevan, MJ ;
Fink, PJ .
NATURE IMMUNOLOGY, 2001, 2 (05) :381-382
[7]   Loss of CD28 expression on CD8+ T cells is induced by IL-2 receptor γ chain signalling cytokines and type IIFN, and increases susceptibility to activation-induced apoptosis [J].
Borthwick, NJ ;
Lowdell, M ;
Salmon, M ;
Akbar, AN .
INTERNATIONAL IMMUNOLOGY, 2000, 12 (07) :1005-1013
[8]   Phototyping: Comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP) [J].
Bunce, M ;
ONeill, CM ;
Barnardo, MCNM ;
Krausa, P ;
Browning, MJ ;
Morris, PJ ;
Welsh, KI .
TISSUE ANTIGENS, 1995, 46 (05) :355-367
[9]   CD8+ T-cell selection, function, and death in the primary immune response in vivo [J].
Callan, MFC ;
Fazou, C ;
Yang, HB ;
Rostron, T ;
Poon, K ;
Hatton, C ;
McMichael, AJ .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 106 (10) :1251-1261
[10]   Large clonal expansions of CD8(+) T cells in acute infectious mononucleosis [J].
Callan, MFC ;
Steven, J ;
Krausa, P ;
Wilson, JDK ;
Moss, PAH ;
Gillespie, GM ;
Bell, JI ;
Rickinson, AB ;
McMichael, AJ .
NATURE MEDICINE, 1996, 2 (08) :906-911