Recursive Monte Carlo filters:: Algorithms and theoretical analysis

被引:105
作者
Künsch, HR [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
关键词
state space models; hidden Markov models; filtering and smoothing; particle filters; auxiliary variables; sampling importance resampling; central limit theorem;
D O I
10.1214/009053605000000426
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recursive Monte Carlo filters, also called particle filters, are a powerful tool to perform computations in general state space models. We discuss and compare the accept-reject version with the more common sampling importance resampling version of the algorithm. In particular, we show how auxiliary variable methods and stratification can be used in the accept-reject version, and we compare different resampling techniques. In a second part, we show laws of large numbers and a central limit theorem for these Monte Carlo filters by simple induction arguments that need only weak conditions. We also show that, under stronger conditions, the required sample size is independent of the length of the observed series.
引用
收藏
页码:1983 / 2021
页数:39
相关论文
共 29 条
[1]  
[Anonymous], 1956, THEOR PROBAB APPL+, DOI [10.1137/1101006, DOI 10.1137/1101006]
[2]   Exponential stability for nonlinear filtering [J].
Atar, R ;
Zeitouni, O .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (06) :697-725
[3]   Improved particle filter for nonlinear problems [J].
Carpenter, J ;
Clifford, P ;
Fearnhead, P .
IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1999, 146 (01) :2-7
[4]   Central limit theorem for sequential Monte Carlo methods and its application to bayesian inference [J].
Chopin, N .
ANNALS OF STATISTICS, 2004, 32 (06) :2385-2411
[5]  
Crisan D., 2002, Monte Carlo Methods and Applications, V8, P343, DOI 10.1515/mcma.2002.8.4.343
[6]  
Crisan D, 2001, STAT ENG IN, P17
[7]  
CRISAN D, 1999, MARKOV PROCESSES REL, V5, P293
[8]  
Del Moral P, 2000, LECT NOTES MATH, V1729, P2
[9]   On the stability of interacting processes with applications to filtering and genetic algorithms [J].
Del Moral, P ;
Guionnet, A .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (02) :155-194
[10]  
Devroye L., 1987, A course in density estimation