Polarization spectroscopy of single fluorescent molecules

被引:215
作者
Ha, T
Laurence, TA
Chemla, DS
Weiss, S
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA
关键词
D O I
10.1021/jp990948j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polarization spectroscopy of single fluorescent molecules is used to probe their rotational dynamics. When a molecule is immobilized on a dry surface, its in-plane dipole orientation is precisely determined by utilizing its transition dipole moment. An angular offset between the absorption and the emission dipoles was detected from a single fluorophore revealing its binding geometry to the surface. In an aqueous environment, DNA-tethered fluorophores display dynamics that are well-described by a hindered rotational diffusion model. A detailed description of the model is given, including calculations to estimate depolarization effects resulting from the high numerical aperture objective used to collect fluorescence photons. Protein-conjugated fluorophores display very distinct dynamics with continuous evolution of the rotational profile, possibly reflecting fluctuations in the polypeptide chain, When protein-conjugated fluorophores are allowed to freely diffuse in solution, it is possible to determine the fluorescence polarization anisotropy of each molecule that traverses the laser beam. The anisotropy values could, in principle, be used to identify conformational states of single molecules without the potential artifacts associated with surface immobilization.
引用
收藏
页码:6839 / 6850
页数:12
相关论文
共 51 条
[11]   Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels [J].
Dickson, RM ;
Norris, DJ ;
Tzeng, YL ;
Moerner, WE .
SCIENCE, 1996, 274 (5289) :966-969
[12]   Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis [J].
Dickson, RM ;
Norris, DJ ;
Moerner, WE .
PHYSICAL REVIEW LETTERS, 1998, 81 (24) :5322-5325
[13]   On/off blinking and switching behaviour of single molecules of green fluorescent protein [J].
Dickson, RM ;
Cubitt, AB ;
Tsien, RY ;
Moerner, WE .
NATURE, 1997, 388 (6640) :355-358
[14]   Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy [J].
Eggeling, C ;
Fries, JR ;
Brand, L ;
Günther, R ;
Seidel, CAM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (04) :1556-1561
[15]   ROTATIONAL BROWNIAN-MOTION AND FLUORESCENCE INTENSITY FLUCTUATIONS [J].
EHRENBER.M ;
RIGLER, R .
CHEMICAL PHYSICS, 1974, 4 (03) :390-401
[16]   IMAGING OF SINGLE FLUORESCENT MOLECULES AND INDIVIDUAL ATP TURNOVERS BY SINGLE MYOSIN MOLECULES IN AQUEOUS-SOLUTION [J].
FUNATSU, T ;
HARADA, Y ;
TOKUNAGA, M ;
SAITO, K ;
YANAGIDA, T .
NATURE, 1995, 374 (6522) :555-559
[17]   SINGLE-MOLECULE SPECTROSCOPY - FLUORESCENCE EXCITATION-SPECTRA WITH POLARIZED-LIGHT [J].
GUTTLER, F ;
SEPIOL, J ;
PLAKHOTNIK, T ;
MITTERDORFER, A ;
RENN, A ;
WILD, UP .
JOURNAL OF LUMINESCENCE, 1993, 56 (1-6) :29-38
[18]   Dual-molecule spectroscopy: Molecular rulers for the study of biological macromolecules [J].
Ha, T ;
Enderle, T ;
Chemla, DS ;
Weiss, S .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1996, 2 (04) :1115-1128
[19]   Single molecule spectroscopy with automated positioning [J].
Ha, T ;
Chemla, DS ;
Enderle, T ;
Weiss, S .
APPLIED PHYSICS LETTERS, 1997, 70 (06) :782-784
[20]   Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor [J].
Ha, T ;
Enderle, T ;
Ogletree, DF ;
Chemla, DS ;
Selvin, PR ;
Weiss, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (13) :6264-6268