A rapid and versatile combined DNA/RNA extraction protocol and its application to the analysis of a novel DNA marker set polymorphic between Arabidopsis thaliana ecotypes Col-0 and Landsberg erecta

被引:57
作者
Berendzen, Kenneth [2 ]
Searle, Iain [2 ]
Ravenscroft, Dean [2 ]
Koncz, Csaba [2 ]
Batschauer, Alfred [3 ]
Coupland, George [2 ]
Somssich, Imre E. [1 ]
Uelker, Bekir [1 ]
机构
[1] Max Planck Inst Plant Breeding Res, Dept Plant Microbe Interact, D-50829 Cologne, Germany
[2] Max Planck Inst Plant Breeding Res, Dept Dev Biol, D-50829 Cologne, Germany
[3] Univ Marburg, D-35032 Marburg, Germany
关键词
D O I
10.1186/1746-4811-1-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Many established PCR-based approaches in plant molecular biology rely on lengthy and expensive methods for isolation of nucleic acids. Although several rapid DNA isolation protocols are available, they have not been tested for simultaneous RNA isolation for RT-PCR applications. In addition, traditional map-based cloning technologies often use ill-proportioned marker regions even when working with the model plant Arabidopsis thaliana, where the availability of the full genorne sequence can now be exploited for the creation of a high-density marker systems. Results: We designed a high-density polymorphic marker set between two frequently used ecotypes. This new polymorphic marker set allows size separation of PCR products on agarose gels and provides an initial resolution of 10 cM in linkage mapping experiments, facilitated by a rapid plant nucleic acid extraction protocol using minimal amounts of A. thaliana tissue. Using this extraction protocol, we have also characterized segregating T-DNA insertion mutations. In addition, we have shown that our rapid nucleic acid extraction protocol can also be used for monitoring transcript levels by RT-PCR amplification. Finally we have demonstrated that our nucleic acid isolation method is also suitable for other plant species, such as tobacco and barley. Conclusion: To facilitate high-throughput linkage mapping and other genornic applications, our nucleic acid isolation protocol yields sufficient quality of DNA and RNA templates for PCR and RT-PCR reactions, respectively. This new technique requires considerably less time compared to other purification methods, and in combination with a new polymorphic PCR marker set dramatically reduces the workload required for linkage mapping of mutations in A. thaliana utilizing crosses between Col-0 and Landsberg erecta (Ler) ecotypes.
引用
收藏
页数:15
相关论文
共 33 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[3]   One-step isolation of plant DNA suitable for PCR amplification [J].
Burr, K ;
Harper, R ;
Linacre, A .
PLANT MOLECULAR BIOLOGY REPORTER, 2001, 19 (04) :367-371
[4]   A rapid method for high throughput DNA extraction from plant material for PCR amplification [J].
Dilworth, E ;
Frey, JE .
PLANT MOLECULAR BIOLOGY REPORTER, 2000, 18 (01) :61-64
[5]   A SIMPLE AND RAPID METHOD FOR THE PREPARATION OF PLANT GENOMIC DNA FOR PCR ANALYSIS [J].
EDWARDS, K ;
JOHNSTONE, C ;
THOMPSON, C .
NUCLEIC ACIDS RESEARCH, 1991, 19 (06) :1349-1349
[6]   The WRKY superfamily of plant transcription factors [J].
Eulgem, T ;
Rushton, PJ ;
Robatzek, S ;
Somssich, IE .
TRENDS IN PLANT SCIENCE, 2000, 5 (05) :199-206
[7]   Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations [J].
Francis, KE ;
Spiker, S .
PLANT JOURNAL, 2005, 41 (03) :464-477
[8]  
FURUYA M, 1993, ANNU REV PLANT PHYS, V44, P617, DOI 10.1146/annurev.pp.44.060193.003153
[9]   Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs [J].
Hepworth, SR ;
Valverde, F ;
Ravenscroft, D ;
Mouradov, A ;
Coupland, G .
EMBO JOURNAL, 2002, 21 (16) :4327-4337
[10]   Arabidopsis map-based cloning in the post-genome era [J].
Jander, G ;
Norris, SR ;
Rounsley, SD ;
Bush, DF ;
Levin, IM ;
Last, RL .
PLANT PHYSIOLOGY, 2002, 129 (02) :440-450