Nudel contributes to microtubule anchoring at the mother centriole and is involved in both dyenin-dependent and -independent centrosomal protein assembly

被引:75
作者
Guo, J
Yang, ZY
Song, W
Chen, Q
Wang, FB
Zhang, QG
Zhu, XL [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell Biol, Mol Cell Biol Lab, Shanghai 200031, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Shanghai 200031, Peoples R China
关键词
D O I
10.1091/mbc.E05-04-0360
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The centrosome is the major microtubule-organizing center in animal cells. Although the cytoplasmic dynein regulator Nudel interacts with centrosomes, its role herein remains unclear. Here, we show that in Cos7 cells Nudel is a mother centriole protein with rapid turnover independent of dynein activity. During centriole duplication, Nudel targets to the new mother centriole later than ninein but earlier than dynactin. Its centrosome localization requires a C-terminal region that is essential for associations with dynein, dynactin, pericentriolar material (PCM)-1, pericentrin, and gamma-tubulin. Overexpression of a mutant Nudel lacking this region, a treatment previously shown to inactivate dynein, dislocates centrosomal Lis1, dynactin, and PCM-1, with little influence on pericentrin and gamma-tubulin in Cos7 and HeLa cells. Silencing Nudel in HeLa cells markedly decreases centrosomal targeting of all the aforementioned proteins. Silencing Nudel also represses centrosomal NIT nucleation and anchoring. Furthermore, Nudel can interact with pericentrin independently of dynein. Our current results suggest that Nudel plays a role in both dynein-mediated centripetal transport of dynactin, Lis1, and PCM-1 as well as in dynein-independent centrosomal targeting of pericentrin and gamma-tubulin. Moreover, Nudel seems to tether dynactin and dynein to the mother centriole for MT anchoring.
引用
收藏
页码:680 / 689
页数:10
相关论文
共 47 条
[1]   Polar expeditions - provisioning the centrosome for mitosis [J].
Blagden, SP ;
Glover, DM .
NATURE CELL BIOLOGY, 2003, 5 (06) :505-511
[2]   Centrosome composition and microtubule anchoring mechanisms [J].
Bornens, M .
CURRENT OPINION IN CELL BIOLOGY, 2002, 14 (01) :25-34
[3]   Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution [J].
Burkhardt, JK ;
Echeverri, CJ ;
Nilsson, T ;
Vallee, RB .
JOURNAL OF CELL BIOLOGY, 1997, 139 (02) :469-484
[4]   Assembly of centrosomal proteins and microtubule organization depends on PCM-1 [J].
Dammermann, A ;
Merdes, A .
JOURNAL OF CELL BIOLOGY, 2002, 159 (02) :255-266
[5]   Pericentrin and γ-tubulin form a protein complex and are organized into a novel lattice at the centrosome [J].
Dictenberg, JB ;
Zimmerman, W ;
Sparks, CA ;
Young, A ;
Vidair, C ;
Zheng, YX ;
Carrington, W ;
Fay, FS ;
Doxsey, SJ .
JOURNAL OF CELL BIOLOGY, 1998, 141 (01) :163-174
[6]   Re-evaluating centrosome function [J].
Doxsey, S .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (09) :688-698
[7]   PERICENTRIN, A HIGHLY CONSERVED CENTROSOME PROTEIN INVOLVED IN MICROTUBULE ORGANIZATION [J].
DOXSEY, SJ ;
STEIN, P ;
EVANS, L ;
CALARCO, PD ;
KIRSCHNER, M .
CELL, 1994, 76 (04) :639-650
[8]   Dynein at the cortex [J].
Dujardin, DL ;
Vallee, RB .
CURRENT OPINION IN CELL BIOLOGY, 2002, 14 (01) :44-49
[9]   Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis [J].
Echeverri, CJ ;
Paschal, BM ;
Vaughan, KT ;
Vallee, RB .
JOURNAL OF CELL BIOLOGY, 1996, 132 (04) :617-633
[10]   Mitotic spindle regulation by Nde1 controls cerebral cortical size [J].
Feng, YY ;
Walsh, CA .
NEURON, 2004, 44 (02) :279-293