Electrical Control of Optical Plasmon Resonance with Graphene

被引:267
作者
Kim, Jonghwan [1 ]
Son, Hyungmok [1 ]
Cho, David J. [1 ,2 ]
Geng, Baisong [1 ]
Regan, Will [1 ,2 ]
Shi, Sufei [1 ]
Kim, Kwanpyo [1 ,2 ]
Zettl, Alex [1 ,2 ]
Shen, Yuen-Ron [1 ,2 ]
Wang, Feng [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
Graphene; plasmon resonance; metamaterials; active plasmonics; gold nanorod; charge transfer sensor; METAMATERIAL; MODULATOR; DYNAMICS; DEVICES; PHASE;
D O I
10.1021/nl302656d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface plasmon has the unique capability to concentrate light into subwavelength volume.(1-5) Active plasmon devices using electrostatic gating can enable flexible control of the plasmon excitations,(6) which has been demonstrated recently in terahertz plasmonic structures.(7-9) Controlling plasmon resonance at optical frequencies, however, remains a significant challenge because gate-induced free, electrons have very weak responses at Optical frequencies.(10) Here we achieve :efficient control of near infrared plasmon resonance in a hybrid graphene-gold nanorod system. Exploiting the uniquely strong(11,12) and gate tunable optical transitions(13,14) of graphene, we are able to significantly modulate both the resonance. frequency and quality factor of gold nanorod plasmon. Our analysis shows that the plasmon-graphene coupling is remarkably strong: even a single electron in graphene at the plasmonic hotspot could have an observable effect on plasmon scattering intensity Such hybrid graphene-nanometallic structure provides a powerful way for electrical control of plasmon resonances at optical frequencies and could enable novel plasmonic sensing down to single charge transfer events.
引用
收藏
页码:5598 / 5602
页数:5
相关论文
共 31 条
[1]   Electrochemical Gate-Controlled Charge Transport in Graphene in Ionic Liquid and Aqueous Solution [J].
Chen, Fang ;
Qing, Quan ;
Xia, Jilin ;
Li, Jinghong ;
Tao, Nongjian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (29) :9908-+
[2]   Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays [J].
Chen, Hou-Tong ;
Lu, Hong ;
Azad, Abul K. ;
Averitt, Richard D. ;
Gossard, Arthur C. ;
Trugman, Stuart A. ;
O'Hara, John F. ;
Taylor, Antoinette J. .
OPTICS EXPRESS, 2008, 16 (11) :7641-7648
[3]   Active terahertz metamaterial devices [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Zide, Joshua M. O. ;
Gossard, Arthur C. ;
Taylor, Antoinette J. ;
Averitt, Richard D. .
NATURE, 2006, 444 (7119) :597-600
[4]   A metamaterial solid-state terahertz phase modulator [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Cich, Michael J. ;
Azad, Abul K. ;
Averitt, Richard D. ;
Taylor, Antoinette J. .
NATURE PHOTONICS, 2009, 3 (03) :148-151
[5]   Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible [J].
Dawlaty, Jahan M. ;
Shivaraman, Shriram ;
Strait, Jared ;
George, Paul ;
Chandrashekhar, Mvs ;
Rana, Farhan ;
Spencer, Michael G. ;
Veksler, Dmitry ;
Chen, Yunqing .
APPLIED PHYSICS LETTERS, 2008, 93 (13)
[6]   PlasMOStor: A Metal-Oxide-Si Field Effect Plasmonic Modulator [J].
Dionne, Jennifer A. ;
Diest, Kenneth ;
Sweatlock, Luke A. ;
Atwater, Harry A. .
NANO LETTERS, 2009, 9 (02) :897-902
[7]   Strong plasmonic enhancement of photovoltage in graphene [J].
Echtermeyer, T. J. ;
Britnell, L. ;
Jasnos, P. K. ;
Lombardo, A. ;
Gorbachev, R. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Ferrari, A. C. ;
Novoselov, K. S. .
NATURE COMMUNICATIONS, 2011, 2
[8]  
Fei Z., 2012, ARXIV12024993V2
[9]   Sum rules for the optical and Hall conductivity in graphene [J].
Gusynin, V. P. ;
Sharapov, S. G. ;
Carbotte, J. P. .
PHYSICAL REVIEW B, 2007, 75 (16)
[10]  
Ju L, 2011, NAT NANOTECHNOL, V6, P630, DOI [10.1038/nnano.2011.146, 10.1038/NNANO.2011.146]