Iris image segmentation and sub-optimal images

被引:17
作者
Matey, James R. [1 ]
Broussard, Randy [1 ]
Kennell, Lauren [2 ]
机构
[1] USN Acad, Ctr Biometr Signal Proc, ECE Dept, Annapolis, MD 21402 USA
[2] Johns Hopkins Appl Phys Lab, Laurel, MD 20723 USA
关键词
Biometric; Iris recognition; Iris segmentation; RECOGNITION;
D O I
10.1016/j.imavis.2009.05.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Iris recognition is well developed and works well for optimal or near-optimal iris images. Dealing with sub-optimal images remains a challenge. Resolution, wavelength, occlusion and gaze are among the most important factors for sub-optimal images. In this paper, we explore the sensitivity of matching to these factors through analysis and numerical simulation, with particular emphasis on the segmentation portion of the processing chain. (C) 2009 Published by Elsevier B.V.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 38 条
[11]  
BOYCE CK, 2006, THESIS W VIRGINIAN U
[12]  
BROUSSARD RP, 2009, 2009 IEEE WORK UNPUB
[13]  
Camus TA, 2002, INT C PATT RECOG, P389, DOI 10.1109/ICPR.2002.1044732
[14]  
CUI JL, 2004, FAST ROBUST IRIS LOC
[15]  
Daugman J., 2004, IEEE T CIRCUITS SYST, V14
[16]  
Daugman J.G., 1994, U.S. Patent, Patent No. 5291560
[17]   New methods in iris recognition [J].
Daugman, John .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (05) :1167-1175
[18]   Probing the uniqueness and randomness of IrisCodes: Results from 200 billion iris pair comparisons [J].
Daugman, John .
PROCEEDINGS OF THE IEEE, 2006, 94 (11) :1927-1935
[19]  
DU YZ, 2004, SPIE EUR S OPT PHOT
[20]  
FANCOURT C, 2005, P 5 INT C AUD VID BA