Cluster analysis and mathematical programming

被引:356
作者
Hansen, P
Jaumard, B
机构
[1] ECOLE HAUTES ETUD COMMERCIALES, MONTREAL, PQ, CANADA
[2] ECOLE POLYTECH MONTREAL, MONTREAL, PQ, CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
cluster analysis; hierarchy; partition;
D O I
10.1007/BF02614317
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a set of entities, Cluster Analysis aims at finding subsets, called clusters, which are homogeneous and/or well separated. As many types of clustering and criteria for homogeneity or separation are of interest, this is a vast field. A survey is given from a mathematical programming viewpoint. Steps of a clustering study, types of clustering and criteria are discussed. Then algorithms for hierarchical, partitioning, sequential, and additive clustering are studied. Emphasis is on solution methods, i.e., dynamic programming, graph theoretical algorithms, branch-and-bound, cutting planes, column generation and heuristics. (C) 1997 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
引用
收藏
页码:191 / 215
页数:25
相关论文
共 118 条
  • [1] FINDING K-POINTS WITH MINIMUM DIAMETER AND RELATED PROBLEMS
    AGGARWAL, A
    IMAI, H
    KATOH, N
    SURI, S
    [J]. JOURNAL OF ALGORITHMS, 1991, 12 (01) : 38 - 56
  • [2] [Anonymous], MATH SCI HUMAINES
  • [3] [Anonymous], 1978, CAHIERS LANALYSE DON
  • [4] WEAK HIERARCHIES ASSOCIATED WITH SIMILARITY MEASURES - AN ADDITIVE CLUSTERING TECHNIQUE
    BANDELT, HJ
    DRESS, AWM
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 1989, 51 (01) : 133 - 166
  • [5] EXPERIMENTS IN QUADRATIC 0-1 PROGRAMMING
    BARAHONA, F
    JUNGER, M
    REINELT, G
    [J]. MATHEMATICAL PROGRAMMING, 1989, 44 (02) : 127 - 137
  • [6] BARNHART C, 1995, COC9403 GEORG I TECH
  • [7] BARTHELEMY JP, 1991, TREES PROXIMITY RELA
  • [8] Bellman R., 1973, Mathematical Biosciences, V18, P311, DOI 10.1016/0025-5564(73)90007-2
  • [9] Benzecri J-P., 1982, Cahiers de l'analyse des donnees, V7, P209
  • [10] BERTOLE U, 1972, NONSERIAL DYNAMIC PR