Levy statistics in Taylor dispersion

被引:4
作者
Compte, A
Camacho, J
机构
[1] Departament de Física, Física Estadística, Universitat Autònoma de Barcelona, Bellaterra, Catalonia
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 05期
关键词
D O I
10.1103/PhysRevE.56.5445
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The longitudinal dispersion for a fractal time random walker being dragged by a solvent flowing through a tube is studied by means of the Langevin and Fokker-Planck formalisms. One observes that for asymptotic long times the dispersion is superdiffusive despite the fact that in a resting background the characteristic diffusion regime is subdiffusive. The resulting behavior is also at variance with the standard diffusive behavior obtained in Taylor dispersion for a Brownian walker.
引用
收藏
页码:5445 / 5449
页数:5
相关论文
共 25 条
[11]  
Katayama Y., 1996, European Journal of Physics, V17, P136, DOI 10.1088/0143-0807/17/3/007
[12]  
Keith Oldham., 1974, FRACTIONAL CALCULUS
[13]  
Montroll E. W., 1973, J STAT PHYS, V9, P101, DOI DOI 10.1007/BF01016843
[14]   ANOMALOUS DIFFUSION - A DYNAMIC PERSPECTIVE [J].
MURALIDHAR, R ;
RAMKRISHNA, D ;
NAKANISHI, H ;
JACOBS, D .
PHYSICA A, 1990, 167 (02) :539-559
[15]  
Risken H., 1984, FOKKER PLANCK EQUATI
[16]   STOCHASTIC TRANSPORT IN A DISORDERED SOLID .1. THEORY [J].
SCHER, H ;
LAX, M .
PHYSICAL REVIEW B, 1973, 7 (10) :4491-4502
[17]  
Shlesinger M. F., 1995, LEVY FLIGHTS RELATED, DOI DOI 10.1007/3-540-59222-9
[18]   FRACTAL TIME IN CONDENSED MATTER [J].
SHLESINGER, MF .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1988, 39 :269-290
[19]   OBSERVATION OF ANOMALOUS DIFFUSION AND LEVY FLIGHTS IN A 2-DIMENSIONAL ROTATING FLOW [J].
SOLOMON, TH ;
WEEKS, ER ;
SWINNEY, HL .
PHYSICAL REVIEW LETTERS, 1993, 71 (24) :3975-3978
[20]   Asymptotic results for a persistent diffusion model of Taylor dispersion of particles [J].
SotoCampos, G ;
Mazo, RM .
JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (1-2) :165-177