Materials for micro- and nanofluidics

被引:17
作者
Kenis, PJA
Stroock, AD
机构
关键词
biological; fluidics; nanoscale;
D O I
10.1557/mrs2006.21
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Over the last two decades, our ability to create networks of fluidic channels of submillimeter or even sub-micrometer diameters has led to a wide range of microchemical applications. Whereas early efforts were directed toward the development of microanalysis systems, in more recent times the development of microreactors and tools for biotechnology and basic biological studies has emerged. This issue of MRS Bulletin highlights the many different ways in which material properties are crucial in the fabrication, assembly, and operation of micro- and nanofluiclic systems. Choice-of-material considerations range from an assessment of whether a desired channel design can be microfabricated in a certain material to whether the material is compatible with the operating conditions (i.e., pressure, temperature) and the chemical composition (solvent, solutes) of the fluid used. Moreover, in certain cases, specific surface or bulk material properties can be used to the benefit of the application of the device. In the development of today's wide range of integrated micro- and nanofluiclic applications, a common challenge emerges: meeting the often contradictory set of constraints imposed on the physical and chemical properties of materials by the envisioned applications. This issue reviews these challenges and their solutions and provides an outlook on how the ingenious use of existing and new materials can spur the development of ever more sophisticated micro- and nanofluidic systems.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 30 条
[1]   Microfluidic integration of porous photonic crystal nanolasers for chemical sensing [J].
Adams, ML ;
Loncar, M ;
Scherer, A ;
Qiu, YM .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2005, 23 (07) :1348-1354
[2]   Microfabricated packed-bed reactor for phosgene synthesis [J].
Ajmera, SK ;
Losey, MW ;
Jensen, KF ;
Schmidt, MA .
AICHE JOURNAL, 2001, 47 (07) :1639-1647
[3]   An integrated nanoliter DNA analysis device [J].
Burns, MA ;
Johnson, BN ;
Brahmasandra, SN ;
Handique, K ;
Webster, JR ;
Krishnan, M ;
Sammarco, TS ;
Man, PM ;
Jones, D ;
Heldsinger, D ;
Mastrangelo, CH ;
Burke, DT .
SCIENCE, 1998, 282 (5388) :484-487
[4]   Microfluidic fuel cell based on laminar flow [J].
Choban, ER ;
Markoski, LJ ;
Wieckowski, A ;
Kenis, PJA .
JOURNAL OF POWER SOURCES, 2004, 128 (01) :54-60
[5]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984
[6]  
*FLUID CORP, INT FLUID CIRC IFCS
[7]   Micromixing of miscible liquids in segmented gas-liquid flow [J].
Günther, A ;
Jhunjhunwala, M ;
Thalmann, M ;
Schmidt, MA ;
Jensen, KF .
LANGMUIR, 2005, 21 (04) :1547-1555
[8]   A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion [J].
Hansen, CL ;
Skordalakes, E ;
Berger, JM ;
Quake, SR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) :16531-16536
[9]   MICROMACHINING A MINIATURIZED CAPILLARY ELECTROPHORESIS-BASED CHEMICAL-ANALYSIS SYSTEM ON A CHIP [J].
HARRISON, DJ ;
FLURI, K ;
SEILER, K ;
FAN, ZH ;
EFFENHAUSER, CS ;
MANZ, A .
SCIENCE, 1993, 261 (5123) :895-897
[10]   Surface modification method of microchannels for gas-liquid two-phase flow in microchips [J].
Hibara, A ;
Iwayama, S ;
Matsuoka, S ;
Ueno, M ;
Kikutani, Y ;
Tokeshi, M ;
Kitamori, T .
ANALYTICAL CHEMISTRY, 2005, 77 (03) :943-947