Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals

被引:404
作者
Fonoberov, VA [1 ]
Alim, KA
Balandin, AA
Xiu, FX
Liu, JL
机构
[1] Univ Calif Riverside, Dept Elect Engn, Nano Device Lab, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Elect Engn, Quntum Struct Lab, Riverside, CA 92521 USA
关键词
D O I
10.1103/PhysRevB.73.165317
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The carrier recombination processes in ZnO quantum dots (similar to 4 nm in diameter), ZnO nanocrystals (similar to 20 nm in diameter) and bulk ZnO crystal have been studied using photoluminescence (PL) spectroscopy in the temperature range from 8.5 to 300 K. The obtained experimental data suggest that the ultraviolet PL in ZnO quantum dots originates from recombination of the acceptor-bound excitons for all temperatures. In the larger size ZnO nanocrystals, the recombination of the acceptor-bound excitons is the dominant contribution to PL only at low temperature (T < 150 K). For higher temperatures (T > 150 K), PL is mostly due to recombination of the donor- bound excitons. Recombination processes in ZnO quantum dots and nanocrystals differ from those in bulk ZnO mainly because of the large surface-to-volume ratio in both types of nanoparticles and, consequently, a large number of acceptor defects near the surface. No strong inhomogeneous broadening has been observed in ultraviolet PL from ZnO quantum dots. Our results shed light on the carrier-recombination processes in ZnO quantum dots and nanocrystals, and can be used for the ZnO nanostructure optimization for the proposed optoelectronic and spintronic applications.
引用
收藏
页数:9
相关论文
共 44 条
[1]   Origin of the optical phonon frequency shifts in ZnO quantum dots [J].
Alim, KA ;
Fonoberov, VA ;
Balandin, AA .
APPLIED PHYSICS LETTERS, 2005, 86 (05) :1-3
[2]   Micro-Raman investigation of optical phonons in ZnO nanocrystals [J].
Alim, KA ;
Fonoberov, VA ;
Shamsa, M ;
Balandin, AA .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (12)
[3]   High temperature excitonic stimulated emission from ZnO epitaxial layers [J].
Bagnall, DM ;
Chen, YF ;
Zhu, Z ;
Yao, T ;
Shen, MY ;
Goto, T .
APPLIED PHYSICS LETTERS, 1998, 73 (08) :1038-1040
[4]   Photoluminescence dynamics in ensembles of wide-band-gap nanocrystallites and powders [J].
Bergman, L ;
Chen, XB ;
Morrison, JL ;
Huso, J ;
Purdy, AP .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (01) :675-682
[5]   Ultraviolet photoluminescence of ZnO thin film prepared by vapor phase growth using a metallic zinc source [J].
Chen, J ;
Fujita, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2002, 41 (2B) :L203-L205
[6]   Doping semiconductor nanocrystals [J].
Erwin, SC ;
Zu, LJ ;
Haftel, MI ;
Efros, AL ;
Kennedy, TA ;
Norris, DJ .
NATURE, 2005, 436 (7047) :91-94
[7]   Comment on "Giant exciton-light coupling in ZnO quantum dots" [Appl. Phys. Lett. 81, 748 (2002)] [J].
Fonoberov, VA ;
Balandin, AA .
APPLIED PHYSICS LETTERS, 2005, 86 (22) :1-2
[8]   Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect [J].
Fonoberov, VA ;
Balandin, AA .
PHYSICAL REVIEW B, 2004, 70 (19) :1-5
[9]   Interface and confined optical phonons in wurtzite nanocrystals [J].
Fonoberov, VA ;
Balandin, AA .
PHYSICAL REVIEW B, 2004, 70 (23) :1-4
[10]   Interface and confined polar optical phonons in spherical ZnO quantum dots with wurtzite crystal structure [J].
Fonoberov, VA ;
Balandin, AA .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL. 1, NO. 11, 2004, 1 (11) :2650-2653