Scale amplification of natural debris flows caused by cascading landslide dam failures

被引:187
作者
Cui, P. [1 ]
Zhou, Gordon G. D.
Zhu, X. H.
Zhang, J. Q.
机构
[1] Chinese Acad Sci, Key Lab Mt Hazards & Earth Surface Proc, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Debris flow; Cascading failure; Landslide dam; Scale amplification; Zhouqu; EARTHQUAKE-INDUCED LANDSLIDES; 3-DIMENSIONAL TERRAIN; ALPS;
D O I
10.1016/j.geomorph.2012.11.009
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Debris flows are typically caused by natural terrain landslides triggered by intense rainfalls. If an incoming mountain torrent collapses a series of landslide dams, large debris flows can form in a very short period. Moreover, the torrent can amplify the scale of the debris flow in the flow direction. The catastrophic debris flows that occurred in Zhouqu, China, on 8 August 2010 were caused by intense rainfall and the upstream cascading failure of landslide dams along the gullies. In the wake of the incident, a field study was conducted to better understand the process of cascading landslide dam failures and the formation of debris flows. This paper looks at the geomorphic properties of the debris-flow gullies, estimates the peak flow discharges at different locations using three different methods, and analyzes the key modes (i.e., different landslide dam types and their combinations) of cascading landslide dam failures and their effect on the scale amplification of debris flows. The results show that five key modes in Luojiayu gully and two modes in Sanyanyu gully accounted for the scale amplification of downstream debris flows in the Zhouqu event. This study illustrates how the hazardous process of natural debris flows can begin several kilometers upstream as a complex cascade of geomorphic events (failure of landslide dams and erosion of the sloping bed) can scale to become catastrophic discharges. Neglecting recognition of these hazardous geomorphic and hydrodynamic processes may result in a high cost. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:173 / 189
页数:17
相关论文
共 45 条
[41]   Methods for predicting peak discharge of floods caused by failure of natural and constructed earthen dams [J].
Walder, JS ;
OConnor, JE .
WATER RESOURCES RESEARCH, 1997, 33 (10) :2337-2348
[42]  
Xu M., 1979, P 1 C CHIN RES DEBR, P51
[43]  
Yang Z.N., 1985, P LANZHOU I GLACIOLO
[44]  
[余斌 Yu Bin], 2010, [工程地质学报, Journal of Engineering Geology], V18, P437
[45]   Dimensional analysis of natural debris flows [J].
Zhou, Gordon G. D. ;
Ng, Charles W. W. .
CANADIAN GEOTECHNICAL JOURNAL, 2010, 47 (07) :719-729