Spectral boundary value problems for the Helmholtz equation with Spectral parameter in boundary conditions on a non-smooth surface

被引:5
作者
Agranovich, MS
Mennicken, R
机构
[1] Moscow Stt. Inst. Electronics M., Universität Regensburg, Regensburg
关键词
D O I
10.1070/SM1999v190n01ABEH000377
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The spectral properties of four problems for the Helmholtz equation with spectral parameter in boundary or transmission conditions on a closed Lipschitz surface S are studied. These problems are related to the classical integral operators of potential type on S for the Helmholtz equation. They have been studied before in the case when S is infinitely smooth. It is shown that the most important properties of eigenvalues and root functions hold also for Lipschitz surfaces S. The machinery of potential theory in Lipschitz domains and of spectral theory is used in the proofs.
引用
收藏
页码:29 / 69
页数:41
相关论文
共 44 条
[11]   CAUCHY INTEGRALS ON LIPSCHITZ CURVES AND RELATED OPERATORS [J].
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (04) :1324-1327
[12]   THE CAUCHY INTEGRAL DEFINES AN OPERATOR ON L2 FOR LIPSCHITZ-CURVES [J].
COIFMAN, RR ;
MCINTOSH, A ;
MEYER, Y .
ANNALS OF MATHEMATICS, 1982, 116 (02) :361-387
[13]  
Colton D., 1983, INTEGRAL EQUATION ME
[14]   BOUNDARY INTEGRAL-OPERATORS ON LIPSCHITZ-DOMAINS - ELEMENTARY RESULTS [J].
COSTABEL, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (03) :613-626
[15]  
DAHLBERG B, 1990, CONT MATH, V107, P39
[16]   ON THE POISSON INTEGRAL FOR LIPSCHITZ AND C1-DOMAINS [J].
DAHLBERG, BEJ .
STUDIA MATHEMATICA, 1979, 66 (01) :13-24
[17]   WEIGHTED NORM INEQUALITIES FOR THE LUSIN AREA INTEGRAL AND THE NONTANGENTIAL MAXIMAL FUNCTIONS FOR FUNCTIONS HARMONIC IN A LIPSCHITZ DOMAIN [J].
DAHLBERG, BEJ .
STUDIA MATHEMATICA, 1980, 67 (03) :297-314
[18]  
DAHLBERG BEJ, 1977, ARCH RATIONAL MECH A, V65, P272
[19]   A proof of the trace theorem of Sobolev spaces on Lischitz domains [J].
Ding, ZH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (02) :591-600
[20]   POTENTIAL TECHNIQUES FOR BOUNDARY-VALUE PROBLEMS ON C1-DOMAINS [J].
FABES, EB ;
JODEIT, M ;
RIVIERE, NM .
ACTA MATHEMATICA, 1978, 141 (3-4) :165-186