A multivalent assay to detect glycosaminoglycan, protein, collagen, RNA, and DNA content in milligram samples of cartilage or hydrogel-based repair cartilage

被引:138
作者
Hoemann, CD
Sun, J
Chrzanowski, V
Buschmann, MD
机构
[1] BioSynTech, Laval, PQ H7V 4B3, Canada
[2] Ecole Polytech, Dept Chem Engn, Montreal, PQ, Canada
[3] Ecole Polytech, Inst Biomed Engn, Montreal, PQ, Canada
关键词
cartilage; chondrocyte; hydrogel; guanidine extraction; protein; glycosaminoglycan; DNA; collagen; mRNA; papain;
D O I
10.1006/abio.2001.5436
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The biochemical measure of success in assisted cartilage repair is normally judged by repair tissue cell density, mRNA and protein expression, and accumulation of extracellular matrix molecules. Existing methods to solubilize cartilage matrix proteoglycans and cellular DNA for quantification, such as papain digestion, often destroy one or more species of the above-named parameters, in order to render others measurable. We have therefore developed a methodology to measure specific levels of mRNA, protein, DNA, glycosaminoglycan, and collagen content on single pulverized 10-mg samples of cartilage, or tissue-engineered cartilage, using successive extractions in concentrated guanidine hydrochloride (GuCl) and guanidine thiocyanate (GITC) solutions. Conditions were developed to solubilize most cellular proteins, DNA proteoglycans, and some matrix proteins with an initial GuCl extraction step. A subsequent extraction with GITC was essential to solubilize the majority of the cellular RNA. Guanidine-insoluble material was rendered soluble by papain digestion, to enable quantification of collagen, residual glycosaminoglycan, and residual unextracted DNA in individual samples. In general, total collagen, GAG, and DNA content measured in multivalent-extracted samples was similar to that obtained with samples digested directly with papain. Moreover, we were able to reliably detect, in these same multivalent extracts, expressed mRNA as well as specific cellular and extracellular matrix proteins. This multivalent assay could be applied to a variety of cells cultured in biopolymers and to tissues from which biochemical components may be otherwise difficult to extract. (C) 2001 Elsevier Science.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 19 条
[1]   THE EFFECTS OF SELECTIVE MATRIX DEGRADATION ON THE SHORT-TERM COMPRESSIVE PROPERTIES OF ADULT HUMAN ARTICULAR-CARTILAGE [J].
BADER, DL ;
KEMPSON, GE ;
EGAN, J ;
GILBEY, W ;
BARRETT, AJ .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1116 (02) :147-154
[2]   Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro [J].
Binette, F ;
McQuaid, DP ;
Haudenschild, DR ;
Yaeger, PC ;
McPherson, JM ;
Tubo, R .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1998, 16 (02) :207-216
[3]  
BOLLAG DM, 1991, PROTEIN METHODS, P74
[4]   CHONDROCYTES IN AGAROSE CULTURE SYNTHESIZE A MECHANICALLY FUNCTIONAL EXTRACELLULAR-MATRIX [J].
BUSCHMANN, MD ;
GLUZBAND, YA ;
GRODZINSKY, AJ ;
KIMURA, JH ;
HUNZIKER, EB .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1992, 10 (06) :745-758
[5]   The Hofmeister series: salt and solvent effects on interfacial phenomena [J].
Cacace, MG ;
Landau, EM ;
Ramsden, JJ .
QUARTERLY REVIEWS OF BIOPHYSICS, 1997, 30 (03) :241-277
[6]   MICRODETERMINATION OF PROTEOGLYCANS AND GLYCOSAMINOGLYCANS IN THE PRESENCE OF GUANIDINE-HYDROCHLORIDE [J].
CHANDRASEKHAR, S ;
ESTERMAN, MA ;
HOFFMAN, HA .
ANALYTICAL BIOCHEMISTRY, 1987, 161 (01) :103-108
[7]   Novel injectable neutral solutions of chitosan form biodegradable gels in situ [J].
Chenite, A ;
Chaput, C ;
Wang, D ;
Combes, C ;
Buschmann, MD ;
Hoemann, CD ;
Leroux, JC ;
Atkinson, BL ;
Binette, F ;
Selmani, A .
BIOMATERIALS, 2000, 21 (21) :2155-2161
[8]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[9]   IMPROVED QUANTITATION AND DISCRIMINATION OF SULFATED GLYCOSAMINOGLYCANS BY USE OF DIMETHYLMETHYLENE BLUE [J].
FARNDALE, RW ;
BUTTLE, DJ ;
BARRETT, AJ .
BIOCHIMICA ET BIOPHYSICA ACTA, 1986, 883 (02) :173-177
[10]  
HAINES DS, 1992, BIOTECHNIQUES, V12, P736