Toeplitz minors

被引:45
作者
Bump, D [1 ]
Diaconis, P [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcta.2001.3214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of the strong Szego limit theorem estimating the determinants of Toeplitz matrices using symmetric function theory. We also obtain asymptotics for Toeplitz minors. (C) 2001 Elsevier Science.
引用
收藏
页码:252 / 271
页数:20
相关论文
共 27 条
[1]   ON THE GENERATING FUNCTIONS OF TOTALLY POSITIVE SEQUENCES [J].
AISSEN, M ;
EDREI, A ;
SCHOENBERG, IJ ;
WHITNEY, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1951, 37 (05) :303-307
[2]  
[Anonymous], 1999, ENUMERATIVE COMBINAT
[3]   On the distribution of the length of the longest increasing subsequence of random permutations [J].
Baik, J ;
Deift, P ;
Johansson, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1119-1178
[4]  
Baxter G., 1961, J MATH ANAL APPL, V2, P223
[5]   A fredholm determinant formula for Toeplitz determinants [J].
Borodin, A ;
Okounkov, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 37 (04) :386-396
[6]  
Bottcher A., 1999, INTRO LARGE TRUNCATE
[7]   ON THE EIGENVALUES OF RANDOM MATRICES [J].
DIACONIS, P ;
SHAHSHAHANI, M .
JOURNAL OF APPLIED PROBABILITY, 1994, 31A :49-62
[8]  
FULMAN J, 2001, APPL SYMMETRIC FUNCT
[9]   SYMMETRIC FUNCTIONS AND P-RECURSIVENESS [J].
GESSEL, IM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 53 (02) :257-285
[10]  
Grenander U, 1958, TOEPLITZ FORMS THEIR