The regulation of AMP-activated protein kinase by upstream kinases

被引:237
作者
Carling, D. [1 ]
Sanders, M. J. [1 ]
Woods, A. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, MRC, Ctr Clin Sci, Hammersmith Hosp,Cellualr Stress Grp, London W12 0NN, England
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
Ca2+/calmodulin-dependent protein kinase kinase; energy homoeostasis; leptin; LKB1; metabolic syndrome; metformin;
D O I
10.1038/ijo.2008.124
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that plays a major role in maintaining energy homoeostasis. Within individual cells, AMPK is activated by a rise in the AMP/ATP ratio that occurs following a fall in ATP levels. AMPK is also regulated by the adipokines, adiponectin and leptin, hormones that are secreted from adipocytes. AMPK regulates a wide range of metabolic pathways, including fatty acid oxidation, fatty acid synthesis, glycolysis and gluconeogenesis. In peripheral tissues, activation of AMPK leads to responses that are beneficial in counteracting the deleterious effects that arise in the metabolic syndrome. Recent studies have demonstrated that modulation of AMPK activity in the hypothalamus plays a role in feeding. A decrease in hypothalamic AMPK activity is associated with decreased feeding, whereas activation of AMPK leads to increased food intake. Furthermore, signalling pathways occurring in the hypothalamus lead to changes in AMPK activity in peripheral tissues, such as skeletal muscle, via the sympathetic nervous system. AMPK, therefore, provides a mechanism for monitoring changes in energy metabolism within individual cells and at the level of the whole body. Activation of AMPK requires phosphorylation of threonine 172 (Thr-172) within the catalytic subunit. Recent studies have shown that both LKB1 and Ca2+/calmodulin-dependent protein kinase kinase-beta (CaMKK beta) play important roles in phosphorylating and activating AMPK. In addition, there is evidence that AMPK can be activated by other upstream kinases, although the physiological significance of this is not clear at present. This review focuses on the role of LKB1 and CaMKK beta in the regulation of AMPK.
引用
收藏
页码:S55 / S59
页数:5
相关论文
共 32 条
[1]   Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy [J].
Arad, M ;
Benson, DW ;
Perez-Atayde, AR ;
McKenna, WJ ;
Sparks, EA ;
Kanter, RJ ;
McGarry, K ;
Seidman, JG ;
Seidman, CE .
JOURNAL OF CLINICAL INVESTIGATION, 2002, 109 (03) :357-362
[3]   Mutations in the γ2 subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy:: evidence for the central role of energy compromise in disease pathogenesis [J].
Blair, E ;
Redwood, C ;
Ashrafian, H ;
Oliveira, M ;
Broxholme, J ;
Kerr, B ;
Salmon, A ;
Östman-Smith, I ;
Watkins, H .
HUMAN MOLECULAR GENETICS, 2001, 10 (11) :1215-1220
[4]   A COMMON BICYCLIC PROTEIN-KINASE CASCADE INACTIVATES THE REGULATORY ENZYMES OF FATTY-ACID AND CHOLESTEROL-BIOSYNTHESIS [J].
CARLING, D ;
ZAMMIT, VA ;
HARDIE, DG .
FEBS LETTERS, 1987, 223 (02) :217-222
[5]   The AMP-activated protein kinase cascade - a unifying system for energy control [J].
Carling, D .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (01) :18-24
[6]   Characterization of AMP-activated protein kinase γ-subunit isoforms and their role in AMP binding [J].
Cheung, PCF ;
Salt, IP ;
Davies, SP ;
Hardie, DG ;
Carling, D .
BIOCHEMICAL JOURNAL, 2000, 346 :659-669
[7]   Functional analysis of mutations in the γ2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-Parkinson-White syndrome [J].
Daniel, T ;
Carling, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (52) :51017-51024
[8]   5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2A(c) [J].
Davies, SP ;
Helps, NR ;
Cohen, PTW ;
Hardie, DG .
FEBS LETTERS, 1995, 377 (03) :421-425
[9]   Identification of a gene responsible for familial Wolff-Parkinson-White syndrome [J].
Gollob, MH ;
Green, MS ;
Tang, ASL ;
Gollob, T ;
Karibe, A ;
Roberts, R ;
Ahmad, F ;
Lozado, R ;
Shah, G ;
Fananapazir, L ;
Bachinski, LL ;
Roberts, R ;
Tapscott, T ;
Gonzales, O ;
Begley, D ;
Mohiddin, S .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 344 (24) :1823-1831
[10]   The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell? [J].
Hardie, DG ;
Carling, D ;
Carlson, M .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :821-855