Bayesian modeling of differential gene expression

被引:57
作者
Lewin, A
Richardson, S
Marshall, C
Glazier, A
Aitman, T
机构
[1] Imperial Coll, Dept Epidemiol & Publ Hlth, London W2 1PG, England
[2] Imperial Coll Sch Med, Hammersmith Hosp, MRC, Ctr Clin Sci, London W12 0NN, England
基金
英国医学研究理事会;
关键词
Bayesian analysis; differential expression; hierarchial model; MCMC; microarray; model checks; normalization; WinBUGS;
D O I
10.1111/j.1541-0420.2005.00394.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a Bayesian hierarchical model for detecting differentially expressing genes that includes simultaneous estimation of array effects, and show how to use the output for choosing lists of genes for further investigation. We give empirical evidence that expression-level dependent array effects are needed, and explore different nonlinear functions as part of our model-based approach to normalization. The model includes gene-specific variances but imposes some necessary shrinkage through a hierarchical structure. Model criticism via posterior predictive checks is discussed. Modeling the array effects (normalization) simultaneously with differential expression gives fewer false positive results. To choose a list of genes, we propose to combine various criteria (for instance, fold change and overall expression) into a single indicator variable for each gene. The posterior distribution of these variables is used to pick the list of genes, thereby taking into account uncertainty in parameter estimates. In an application to mouse knockout data, Gene Ontology annotations over- and underrepresented among the genes oil the chosen list are consistent with biological expectations.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 28 条
[1]   Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats [J].
Aitman, TJ ;
Glazier, AM ;
Wallace, CA ;
Cooper, LD ;
Norsworthy, PJ ;
Wahid, FN ;
Al-Majali, KM ;
Trembling, PM ;
Mann, CJ ;
Shoulders, CC ;
Graf, D ;
St Lezin, E ;
Kurtz, TW ;
Kren, V ;
Pravenec, M ;
Ibrahimi, A ;
Abumrad, NA ;
Stanton, LW ;
Scott, J .
NATURE GENETICS, 1999, 21 (01) :76-83
[2]   FatiGO:: a web tool for finding significant associations of Gene Ontology terms with groups of genes [J].
Al-Shahrour, F ;
Díaz-Uriarte, R ;
Dopazo, J .
BIOINFORMATICS, 2004, 20 (04) :578-580
[3]   P values for composite null models [J].
Bayarri, MJ ;
Berger, JO .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (452) :1127-1142
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Bayesian integrated functional analysis of microarray data [J].
Bhattacharjee, M ;
Pritchard, CC ;
Nelson, PS ;
Arjas, E .
BIOINFORMATICS, 2004, 20 (17) :2943-2953
[6]   Degrees of differential gene expression: detecting biologically significant expression differences and estimating their magnitudes [J].
Bickel, DR .
BIOINFORMATICS, 2004, 20 (05) :682-U255
[7]  
Carroll RJ., 1995, MEASUREMENT ERROR NO
[8]  
Chen Y, 1997, J Biomed Opt, V2, P364, DOI 10.1117/12.281504
[9]   Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects [J].
Clément, K ;
Viguerie, N ;
Poitou, C ;
Carette, C ;
Pelloux, V ;
Curat, CA ;
Sicard, A ;
Rome, S ;
Benis, A ;
Zucker, JD ;
Vidal, H ;
Laville, M ;
Barsh, GS ;
Basdevant, A ;
Stich, V ;
Cancello, R ;
Langin, D .
FASEB JOURNAL, 2004, 18 (14) :1657-1669
[10]  
Cowell LG, 2002, GENOME BIOL, V3