Robust filtering with missing data and a deterministic description of noise and uncertainty

被引:48
作者
Savkin, AV [1 ]
Petersen, IR [1 ]
机构
[1] AUSTRALIAN DEF FORCE ACAD,DEPT ELECT ENGN,CAMPBELL 2600,AUSTRALIA
基金
澳大利亚研究理事会;
关键词
D O I
10.1080/00207729708929397
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper considers the problem of robust state estimation for the case in which some of the measurement data is missing. This problem is considered within the framework of a class of uncertain discrete-time systems with a deterministic description of noise and uncertainty. The main result is a recursive scheme for constructing an ellipsoidal state estimation set of all states consistent with the available measured output and the given noise and uncertainty description.
引用
收藏
页码:373 / 378
页数:6
相关论文
共 10 条
[1]  
Anderson B. D. O., 1979, OPTIMAL FILTERING
[2]  
[Anonymous], TIME SERIES ANAL IRR
[3]   RECURSIVE STATE ESTIMATION FOR A SET-MEMBERSHIP DESCRIPTION OF UNCERTAINTY [J].
BERTSEKAS, DP ;
RHODES, IB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (02) :117-+
[4]   A SIMPLE TREATMENT FOR SUBOPTIMAL KALMAN FILTERING IN CASE OF MEASUREMENT DATA MISSING [J].
CHEN, GR .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1990, 26 (02) :413-415
[5]   MINIMAX ROBUST DECONVOLUTION FILTERS UNDER STOCHASTIC PARAMETRIC AND NOISE UNCERTAINTIES [J].
CHEN, YL ;
CHEN, BS .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (01) :32-45
[6]  
CLEMENTS DJ, 1978, SINGULAR OPTIMAL CON
[7]  
DESOUZA C, 1995, IEEE T SIGNAL PROCES, V45, P709
[8]  
Lewis F.L., 1986, OPTIMAL CONTROL
[9]   A DECONVOLUTION FILTER FOR MULTICHANNEL NONMINIMUM-PHASE SYSTEMS VIA THE MINIMAX APPROACH [J].
PENG, SC ;
CHEN, BS .
SIGNAL PROCESSING, 1994, 36 (01) :71-90
[10]   A GAME-THEORY APPROACH TO ROBUST DISCRETE-TIME H-INFINITY-ESTIMATION [J].
THEODOR, Y ;
SHAKED, U ;
DESOUZA, CE .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (06) :1486-1495