Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: Multiple Factor Analysis approach

被引:87
作者
de Tayrac, Marie [2 ,3 ]
Le, Sebastien [1 ]
Aubry, Marc [4 ]
Mosser, Jean [2 ,3 ,4 ]
Husson, Francois [1 ]
机构
[1] Agrocampus Rennes, UMR 6625, Lab Math Appl, CNRS, Rennes, France
[2] Univ Rennes 1, CNRS, UMR 6061, IFR 140,Fac Med, F-35043 Rennes, France
[3] CHU Rennes, Dept Biochem & Mol Genet, Med Genom Unit, Rennes, France
[4] Ouest Genopole, IFR 140, Transcript Platform, Rennes, France
来源
BMC GENOMICS | 2009年 / 10卷
基金
美国国家科学基金会;
关键词
GENE-EXPRESSION-DATA; HUMAN GLIOMAS; MULTIVARIATE-ANALYSIS; MICROARRAY DATA; ASSOCIATION; INFORMATION; PACKAGE; CANCER; CELLS; 19Q;
D O I
10.1186/1471-2164-10-32
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Genomic analysis will greatly benefit from considering in a global way various sources of molecular data with the related biological knowledge. It is thus of great importance to provide useful integrative approaches dedicated to ease the interpretation of microarray data. Results: Here, we introduce a data-mining approach, Multiple Factor Analysis (MFA), to combine multiple data sets and to add formalized knowledge. MFA is used to jointly analyse the structure emerging from genomic and transcriptomic data sets. The common structures are underlined and graphical outputs are provided such that biological meaning becomes easily retrievable. Gene Ontology terms are used to build gene modules that are superimposed on the experimentally interpreted plots. Functional interpretations are then supported by a step-by-step sequence of graphical representations. Conclusion: When applied to genomic and transcriptomic data and associated Gene Ontology annotations, our method prioritize the biological processes linked to the experimental settings. Furthermore, it reduces the time and effort to analyze large amounts of 'Omics' data.
引用
收藏
页数:17
相关论文
共 38 条
[1]   Microarray data analysis: from disarray to consolidation and consensus [J].
Allison, DB ;
Cui, XQ ;
Page, GP ;
Sabripour, M .
NATURE REVIEWS GENETICS, 2006, 7 (01) :55-65
[2]  
[Anonymous], GENE ONTOLOGY ANNOTA
[3]  
[Anonymous], 1996, Rev. Stat. Appl.
[4]  
[Anonymous], GENE EXPRESSION OMNI
[5]  
Bigner S H, 1999, Neuro Oncol, V1, P52, DOI 10.1093/neuonc/1.1.52
[6]   Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas [J].
Bredel, M ;
Bredel, C ;
Juric, D ;
Harsh, GR ;
Vogel, H ;
Recht, LD ;
Sikic, BI .
CANCER RESEARCH, 2005, 65 (19) :8679-8689
[7]   Integration of GO annotations in Correspondence Analysis: facilitating the interpretation of microarray data [J].
Busold, CH ;
Winter, S ;
Hauser, N ;
Bauer, A ;
Dippon, J ;
Hoheisel, JD ;
Fellenberg, K .
BIOINFORMATICS, 2005, 21 (10) :2424-2429
[8]   MADE4:: an R package for multivariate analysis of gene expression data [J].
Culhane, AC ;
Thioulouse, J ;
Perrière, G ;
Higgins, DG .
BIOINFORMATICS, 2005, 21 (11) :2789-2790
[9]   Selection of biomarkers by a multivariate statistical processing of composite metabonomic data sets using multiple factor analysis [J].
Dumas, ME ;
Canlet, C ;
Debrauwer, L ;
Martin, P ;
Paris, A .
JOURNAL OF PROTEOME RESEARCH, 2005, 4 (05) :1485-1492
[10]   MULTIPLE FACTOR-ANALYSIS (AFMULT PACKAGE) [J].
ESCOFIER, B ;
PAGES, J .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1994, 18 (01) :121-140