Indirect readout of the trp-repressor-operator complex by B-DNA's backbone conformation transitions

被引:22
作者
Wellenzohn, B [1 ]
Flader, W [1 ]
Winger, RH [1 ]
Hallbrucker, A [1 ]
Mayer, E [1 ]
Liedl, KR [1 ]
机构
[1] Univ Innsbruck, Inst Gen Inorgan & Theoret Chem, A-6020 Innsbruck, Austria
关键词
D O I
10.1021/bi015642t
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although the trp-repressor-operator complex is one of the best studied transcriptional controlling systems, some questions regarding the specific recognition of the operator by the repressor remain. We performed a 2.35 ns long molecular dynamics simulation to clarify the influence of the two B-DNA backbone conformational. substates B(I) and B(II) on complexation, The trp-repressor-operator is an ideal biological system for this study because experimental results have already figured out that the interaction between the internucleotide phosphates and the protein is essential for the formation of the high affinity complex. Our simulation supports these results, but more important it shows a strong correlation between the B(I)/B(II) phosphate substate and the number of interactions with this phosphate. In particular the B(I) reversible arrow B(II) transitions occur synchronous to hydrogen bond breaking or formation. To the best of our knowledge, this was observed for the first time. Thus, we conclude that the sequence specific B(I)/B(II) behavior contributes via indirect readout to sequence specific recognition. These results have implication for the design of transcription-controlling drugs in view of the recently published influence of minor groove binders on the B(I)/B(II) pattern. The simulation also agrees with crystallographically observed hydration sites. This is consistent with experimental results and indicates the correctness of the model used.
引用
收藏
页码:4088 / 4095
页数:8
相关论文
共 62 条
[1]   Direct versus indirect readout in the interaction of the trp repressor with non-canonical binding sites [J].
Bareket-Samish, A ;
Cohen, I ;
Haran, TE .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 277 (05) :1071-1080
[2]   MUTANT TRP REPRESSORS WITH NEW DNA-BINDING SPECIFICITIES [J].
BASS, S ;
SORRELLS, V ;
YOUDERIAN, P .
SCIENCE, 1988, 242 (4876) :240-245
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]  
Berman HM, 1997, BIOPOLYMERS, V44, P23, DOI 10.1002/(SICI)1097-0282(1997)44:1<23::AID-BIP3>3.0.CO
[5]  
2-1
[6]   THE NUCLEIC-ACID DATABASE - A COMPREHENSIVE RELATIONAL DATABASE OF 3-DIMENSIONAL STRUCTURES OF NUCLEIC-ACIDS [J].
BERMAN, HM ;
OLSON, WK ;
BEVERIDGE, DL ;
WESTBROOK, J ;
GELBIN, A ;
DEMENY, T ;
HSIEH, SH ;
SRINIVASAN, AR ;
SCHNEIDER, B .
BIOPHYSICAL JOURNAL, 1992, 63 (03) :751-759
[7]   MOLECULAR-DYNAMICS STUDIES OF DNA [J].
BEVERIDGE, DL ;
RAVISHANKER, G .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1994, 4 (02) :246-255
[8]   Minor groove-binding architectural proteins: Structure, function, and DNA recognition [J].
Bewley, CA ;
Gronenborn, AM ;
Clore, GM .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1998, 27 :105-131
[9]  
CAREY J, 1989, J BIOL CHEM, V264, P1941
[10]  
Case DA, 1999, AMBER 6