Large deviation function of the partially asymmetric exclusion process

被引:49
作者
Lee, DS [1 ]
Kim, D [1 ]
机构
[1] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 06期
关键词
D O I
10.1103/PhysRevE.59.6476
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The large deviation function obtained recently by Derrida and Lebowitz [Phys, Rev. Lett. 80, 209 (1998)] for the totally asymmetric exclusion process is generalized to the partially asymmetric case in the scaling limit. The asymmetry parameter rescales the scaling variable in a simple way. The finite-sits corrections to the universal scaling function and the universal cumulant ratio are also obtained to the leading order. [S1063-651X(99)08006-X].
引用
收藏
页码:6476 / 6482
页数:7
相关论文
共 8 条
[1]   Exact diffusion constant for the one-dimensional partially asymmetric exclusion model [J].
Derrida, B ;
Mallick, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (04) :1031-1046
[2]   Universal large-deviation function of the Kardar-Parisi-Zhang equation in one dimension [J].
Derrida, B ;
Appert, C .
JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (1-2) :1-30
[3]   Exact large deviation function in the asymmetric exclusion process [J].
Derrida, B ;
Lebowitz, JL .
PHYSICAL REVIEW LETTERS, 1998, 80 (02) :209-213
[4]   An exactly soluble non-equilibrium system: The asymmetric simple exclusion process [J].
Derrida, B .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 301 (1-3) :65-83
[5]   BETHE SOLUTION FOR THE DYNAMIC-SCALING EXPONENT OF THE NOISY BURGERS-EQUATION [J].
GWA, LH ;
SPOHN, H .
PHYSICAL REVIEW A, 1992, 46 (02) :844-854
[6]   BETHE-ANSATZ SOLUTION FOR CROSSOVER SCALING FUNCTIONS OF THE ASYMMETRIC XXZ CHAIN AND THE KARDAR-PARISI-ZHANG-TYPE GROWTH-MODEL [J].
KIM, D .
PHYSICAL REVIEW E, 1995, 52 (04) :3512-3524
[7]  
KIM D, UNPUB
[8]   TIME-REVERSAL INVARIANCE AND UNIVERSALITY OF TWO-DIMENSIONAL GROWTH-MODELS [J].
PLISCHKE, M ;
RACZ, Z ;
LIU, D .
PHYSICAL REVIEW B, 1987, 35 (07) :3485-3495